Linux socket編程介紹

本文介紹了Linux socket編程相關知識
主要內容如下:

  • 1、socket介紹

  • 2、socket的基本操作

    • 2.1、socket()函數

    • 2.2、bind()函數

    • 2.3、listen()、connect()函數

    • 2.4、accept()函數

    • 2.5、read()、write()函數等

    • 2.6、close()函數

  • 3、實例

1、socket介紹

socket是TCP/IP網絡的API,用來編寫TCP/IP網絡上的應用程式

socket的用於網絡進程之間的通信,網絡層的“ip地址”可以唯一標識網絡中的主機,而傳輸層的“協議+端口”可以唯一標識主機中的應用程序(進程)。這樣利用三元組(ip地址,協議,端口)就可以標識網絡的進程了,網絡中的進程通信就可以利用這個三元組與其它進程進行交互。

socket的工作原理基於客戶端/服務器模式,服務器在網絡一端進行監聽,客戶端則進行連接,建立連接後即可進行數據交互
socket server-client 

2、socket的基本操作

下面介紹幾個基本的socket接口函數。

2.1、socket()函數

int socket(int domain, int type, int protocol);

socket函數對應於普通文件的打開操作。普通文件的打開操作返回一個文件描述字,而socket()用於創建一個socket描述符(socket descriptor),它唯一標識一個socket。這個socket描述字跟文件描述字一樣,後續的操作都有用到它,把它作爲參數,通過它來進行一些讀寫操作。

正如可以給fopen的傳入不同參數值,以打開不同的文件。創建socket的時候,也可以指定不同的參數創建不同的socket描述符,socket函數的三個參數分別爲:

  • domain:即協議域,又稱爲協議族(family)。常用的協議族有,AF_INET、AF_INET6、AF_LOCAL(或稱AF_UNIX,Unix域socket)、AF_ROUTE等等。協議族決定了socket的地址類型,在通信中必須採用對應的地址,如AF_INET決定了要用ipv4地址(32位的)與端口號(16位的)的組合、AF_UNIX決定了要用一個絕對路徑名作爲地址
  • type:指定socket類型。常用的socket類型有,SOCK_STREAM、SOCK_DGRAM、SOCK_RAW、SOCK_PACKET、SOCK_SEQPACKET等
  • protocol:就是指定協議。常用的協議有,IPPROTO_TCP、IPPTOTO_UDP、IPPROTO_SCTP、IPPROTO_TIPC等,它們分別對應TCP傳輸協議、UDP傳輸協議、STCP傳輸協議、TIPC傳輸協議

注意:並不是上面的type和protocol可以隨意組合的,如SOCK_STREAM不可以跟IPPROTO_UDP組合。當protocol爲0時,會自動選擇type類型對應的默認協議。

當我們調用socket創建一個socket時,返回的socket描述字它存在於協議族(address family,AF_XXX)空間中,但沒有一個具體的地址。如果想要給它賦值一個地址,就必須調用bind()函數,否則就當調用connect()、listen()時系統會自動隨機分配一個端口。

2.2、bind()函數

正如上面所說bind()函數把一個地址族中的特定地址賦給socket。例如對應AF_INET、AF_INET6就是把一個ipv4或ipv6地址和端口號組合賦給socket。

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

函數的三個參數分別爲:

  • sockfd:即socket描述字,它是通過socket()函數創建了,唯一標識一個socket。bind()函數就是將給這個描述字綁定一個名字。
  • addr:一個const struct sockaddr *指針,指向要綁定給sockfd的協議地址。這個地址結構根據地址創建socket時的地址協議族的不同而不同,如ipv4對應的是:
    struct sockaddr_in {
        sa_family_t    sin_family; /* address family: AF_INET */
        in_port_t      sin_port;   /* port in network byte order */
        struct in_addr sin_addr;   /* internet address */
    };
    
    /* Internet address. */
    struct in_addr {
        uint32_t       s_addr;     /* address in network byte order */
    };

    ipv6對應的是:

    struct sockaddr_in6 { 
        sa_family_t     sin6_family;   /* AF_INET6 */ 
        in_port_t       sin6_port;     /* port number */ 
        uint32_t        sin6_flowinfo; /* IPv6 flow information */ 
        struct in6_addr sin6_addr;     /* IPv6 address */ 
        uint32_t        sin6_scope_id; /* Scope ID (new in 2.4) */ 
    };
    
    struct in6_addr { 
        unsigned char   s6_addr[16];   /* IPv6 address */ 
    };

    Unix域對應的是:

    #define UNIX_PATH_MAX    108
    
    struct sockaddr_un { 
        sa_family_t sun_family;               /* AF_UNIX */ 
        char        sun_path[UNIX_PATH_MAX];  /* pathname */ 
    };
  • addrlen:對應的是地址的長度。

通常服務器在啓動的時候都會綁定一個衆所周知的地址(如ip地址+端口號),用於提供服務,客戶就可以通過它來接連服務器;而客戶端就不用指定,有系統自動分配一個端口號和自身的ip地址組合。這就是爲什麼通常服務器端在listen之前會調用bind(),而客戶端就不會調用,而是在connect()時由系統隨機生成一個。

網絡字節序與主機字節序

主機字節序就是我們平常說的大端和小端模式:不同的CPU有不同的字節序類型,這些字節序是指整數在內存中保存的順序,這個叫做主機序。引用標準的Big-Endian和Little-Endian的定義如下:

a) Little-Endian就是低位字節排放在內存的低地址端,高位字節排放在內存的高地址端。

b) Big-Endian就是高位字節排放在內存的低地址端,低位字節排放在內存的高地址端。

網絡字節序:4個字節的32 bit值以下面的次序傳輸:首先是0~7bit,其次8~15bit,然後16~23bit,最後是24~31bit。這種傳輸次序稱作大端字節序。由於TCP/IP首部中所有的二進制整數在網絡中傳輸時都要求以這種次序,因此它又稱作網絡字節序。字節序,顧名思義字節的順序,就是大於一個字節類型的數據在內存中的存放順序,一個字節的數據沒有順序的問題了。

所以:在將一個地址綁定到socket的時候,請先將主機字節序轉換成爲網絡字節序,而不要假定主機字節序跟網絡字節序一樣使用的是Big-Endian。由於這個問題曾引發過血案!公司項目代碼中由於存在這個問題,導致了很多莫名其妙的問題,所以請謹記對主機字節序不要做任何假定,務必將其轉化爲網絡字節序再賦給socket。

2.3、listen()、connect()函數

如果作爲一個服務器,在調用socket()、bind()之後就會調用listen()來監聽這個socket,如果客戶端這時調用connect()發出連接請求,服務器端就會接收到這個請求。

int listen(int sockfd, int backlog);
int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

listen函數的第一個參數即爲要監聽的socket描述字,第二個參數爲相應socket可以排隊的最大連接個數。socket()函數創建的socket默認是一個主動類型的,listen函數將socket變爲被動類型的,等待客戶的連接請求。

connect函數的第一個參數即爲客戶端的socket描述字,第二參數爲服務器的socket地址,第三個參數爲socket地址的長度。客戶端通過調用connect函數來建立與TCP服務器的連接。

2.4、accept()函數

TCP服務器端依次調用socket()、bind()、listen()之後,就會監聽指定的socket地址了。TCP客戶端依次調用socket()、connect()之後就想TCP服務器發送了一個連接請求。TCP服務器監聽到這個請求之後,就會調用accept()函數取接收請求,這樣連接就建立好了。之後就可以開始網絡I/O操作了,即類同於普通文件的讀寫I/O操作。

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

accept函數的第一個參數爲服務器的socket描述字,第二個參數爲指向struct sockaddr *的指針,用於返回客戶端的協議地址,第三個參數爲協議地址的長度。如果accpet成功,那麼其返回值是由內核自動生成的一個全新的描述字,代表與返回客戶的TCP連接。

注意:accept的第一個參數爲服務器的socket描述字,是服務器開始調用socket()函數生成的,稱爲監聽socket描述字;而accept函數返回的是已連接的socket描述字。一個服務器通常通常僅僅只創建一個監聽socket描述字,它在該服務器的生命週期內一直存在。內核爲每個由服務器進程接受的客戶連接創建了一個已連接socket描述字,當服務器完成了對某個客戶的服務,相應的已連接socket描述字就被關閉。

2.5、read()、write()等函數

萬事具備只欠東風,至此服務器與客戶已經建立好連接了。可以調用網絡I/O進行讀寫操作了,即實現了網咯中不同進程之間的通信
網絡I/O操作有下面幾組:

  • read()/write()
  • recv()/send()
  • readv()/writev()
  • recvmsg()/sendmsg()
  • recvfrom()/sendto()

它們的聲明如下:

       #include <unistd.h>

       ssize_t read(int fd, void *buf, size_t count);
       ssize_t write(int fd, const void *buf, size_t count);

       #include <sys/types.h>
       #include <sys/socket.h>

       ssize_t send(int sockfd, const void *buf, size_t len, int flags);
       ssize_t recv(int sockfd, void *buf, size_t len, int flags);

       ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
                      const struct sockaddr *dest_addr, socklen_t addrlen);
       ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
                        struct sockaddr *src_addr, socklen_t *addrlen);

       ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
       ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

read函數是負責從fd中讀取內容.當讀成功時,read返回實際所讀的字節數,如果返回的值是0表示已經讀到文件的結束了,小於0表示出現了錯誤。如果錯誤爲EINTR說明讀是由中斷引起的,如果是ECONNREST表示網絡連接出了問題。

write函數將buf中的nbytes字節內容寫入文件描述符fd.成功時返回寫的字節數。失敗時返回-1,並設置errno變量。 在網絡程序中,當我們向套接字文件描述符寫時有倆種可能。1)write的返回值大於0,表示寫了部分或者是全部的數據。2)返回的值小於0,此時出現了錯誤。我們要根據錯誤類型來處理。如果錯誤爲EINTR表示在寫的時候出現了中斷錯誤。如果爲EPIPE表示網絡連接出現了問題(對方已經關閉了連接)。

其它的我就不一一介紹這幾對I/O函數了,具體參見man文檔或者baidu、Google,下面的例子中將使用到send/recv。

2.6、close()函數

在服務器與客戶端建立連接之後,會進行一些讀寫操作,完成了讀寫操作就要關閉相應的socket描述字,好比操作完打開的文件要調用fclose關閉打開的文件。

#include <unistd.h>
int close(int fd);

close一個TCP socket的缺省行爲時把該socket標記爲以關閉,然後立即返回到調用進程。該描述字不能再由調用進程使用,也就是說不能再作爲read或write的第一個參數。

注意:close操作只是使相應socket描述字的引用計數-1,只有當引用計數爲0的時候,纔會觸發TCP客戶端向服務器發送終止連接請求。

3、實例

下面編寫一個簡單的服務器、客戶端(使用TCP)——服務器端一直監聽本機的6666號端口,如果收到連接請求,將接收請求並接收客戶端發來的消息;客戶端與服務器端建立連接併發送一條消息。

服務器端代碼:

服務器端

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<errno.h>
#include<sys/types.h>
#include<sys/socket.h>
#include<netinet/in.h>

#define MAXLINE 4096

int main(int argc, char** argv)
{
    int    listenfd, connfd;
    struct sockaddr_in     servaddr;
    char    buff[4096];
    int     n;

    if( (listenfd = socket(AF_INET, SOCK_STREAM, 0)) == -1 ){
    printf("create socket error: %s(errno: %d)\n",strerror(errno),errno);
    exit(0);
    }

    memset(&servaddr, 0, sizeof(servaddr));
    servaddr.sin_family = AF_INET;
    servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
    servaddr.sin_port = htons(6666);

    if( bind(listenfd, (struct sockaddr*)&servaddr, sizeof(servaddr)) == -1){
    printf("bind socket error: %s(errno: %d)\n",strerror(errno),errno);
    exit(0);
    }

    if( listen(listenfd, 10) == -1){
    printf("listen socket error: %s(errno: %d)\n",strerror(errno),errno);
    exit(0);
    }

    printf("======waiting for client's request======\n");
    while(1){
    if( (connfd = accept(listenfd, (struct sockaddr*)NULL, NULL)) == -1){
        printf("accept socket error: %s(errno: %d)",strerror(errno),errno);
        continue;
    }
    n = recv(connfd, buff, MAXLINE, 0);
    buff[n] = '\0';
    printf("recv msg from client: %s\n", buff);
    close(connfd);
    }

    close(listenfd);
}

客戶端代碼:

客戶端

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<errno.h>
#include<sys/types.h>
#include<sys/socket.h>
#include<netinet/in.h>

#define MAXLINE 4096

int main(int argc, char** argv)
{
    int    sockfd, n;
    char    recvline[4096], sendline[4096];
    struct sockaddr_in    servaddr;

    if( argc != 2){
    printf("usage: ./client <ipaddress>\n");
    exit(0);
    }

    if( (sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0){
    printf("create socket error: %s(errno: %d)\n", strerror(errno),errno);
    exit(0);
    }

    memset(&servaddr, 0, sizeof(servaddr));
    servaddr.sin_family = AF_INET;
    servaddr.sin_port = htons(6666);
    if( inet_pton(AF_INET, argv[1], &servaddr.sin_addr) <= 0){
    printf("inet_pton error for %s\n",argv[1]);
    exit(0);
    }

    if( connect(sockfd, (struct sockaddr*)&servaddr, sizeof(servaddr)) < 0){
    printf("connect error: %s(errno: %d)\n",strerror(errno),errno);
    exit(0);
    }

    printf("send msg to server: \n");
    fgets(sendline, 4096, stdin);
    if( send(sockfd, sendline, strlen(sendline), 0) < 0)
    {
    printf("send msg error: %s(errno: %d)\n", strerror(errno), errno);
    exit(0);
    }

    close(sockfd);
    exit(0);
}

 

當然上面的代碼很簡單,也有很多缺點,這就只是簡單的演示socket的基本函數使用。其實不管有多複雜的網絡程序,都使用的這些基本函數。上面的服務器使用的是迭代模式的,即只有處理完一個客戶端請求才會去處理下一個客戶端的請求,這樣的服務器處理能力是很弱的,現實中的服務器都需要有併發處理能力!爲了需要併發處理,服務器需要fork()一個新的進程或者線程去處理請求等。

參考:
Linux Socket編程(不限Linux)
IBM Linux socket 編程
用C語言實現Ping程序功能
Windows socket編程

發佈了26 篇原創文章 · 獲贊 3 · 訪問量 4萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章