kmp算法

原文地址:kmp算法作者:子賢的快樂生活

 KMP算法

在介紹KMP算法之前,先介紹一下BF算法。

一.BF算法

BF算法是普通的模式匹配算法,BF算法的思想就是將目標串S的第一個字符與模式串P的第一個字符進行匹配,若相等,則繼續比較S的第二個字符和P的第二個字符;若不相等,則比較S的第二個字符和P的第一個字符,依次比較下去,直到得出最後的匹配結果。

舉例說明:

S: ababcababa

P: ababa

BF算法匹配的步驟如下

i=0 i=1 i=2 i=3 i=4

第一趟:ababcababa 第二趟:ababcababa 第三趟:ababcababa 第四趟:ababcababa 第五趟:ababcababa

       ababa             ababa             ababa             ababa             ababa

       j=0               j=1               j=2                j=3              j=4(i和j回溯)

       i=1               i=2               i=3                i=4              i=3

第六趟:ababcababa 第七趟:ababcababa 第八趟:ababcababa 第九趟:ababcababa 第十趟:ababcababa

        ababa             ababa             ababa             ababa             ababa

        j=0               j=0                j=1              j=2(i和j回溯)       j=0

        i=4               i=5                i=6              i=7                 i=8

第十一趟:ababcababa 第十二趟:ababcababa 第十三趟:ababcababa 第十四趟:ababcababa 第十五趟:ababcababa

             ababa                ababa               ababa               ababa               ababa

             j=0                  j=0                 j=1                  j=2                 j=3

            i=9

第十六趟:ababcababa

              ababa

              j=4(匹配成功)

代碼實現:

int BFMatch(char *s,char *p)
{
int i,j;
i=0;
while(i<strlen(s))
{
j=0;
while(s[i]==p[j]&&j<strlen(p))
{
i++;
j++;
}
if(j==strlen(p))
return i-strlen(p);
i=i-j+1; //指針i回溯
}
return -1;
}

其實在上面的匹配過程中,有很多比較是多餘的。在第五趟匹配失敗的時候,在第六趟,i可以保持不變,j值爲2。因爲在前面匹配的過程中,對於串S,已知s0s1s2s3=p0p1p2p3,又因爲p0!=p1!,所以第六趟的匹配是多餘的。又由於p0==p2,p1==p3,所以第七趟和第八趟的匹配也是多餘的。在KMP算法中就省略了這些多餘的匹配。

二.KMP算法

KMP算法之所以叫做KMP算法是因爲這個算法是由三個人共同提出來的,就取三個人名字的首字母作爲該算法的名字。其實KMP算法與BF算法的區別就在於KMP算法巧妙的消除了指針i的回溯問題,只需確定下次匹配j的位置即可,使得問題的複雜度由O(mn)下降到O(m+n)。

在KMP算法中,爲了確定在匹配不成功時,下次匹配時j的位置,引入了next[]數組,next[j]的值表示P[0...j-1]中最長後綴的長度等於相同字符序列的前綴。

對於next[]數組的定義如下:

1)next[j]=-1 j=0

2)next[j]=max k:0<k<j P[0...k-1]=P[j-k,j-1]

3)next[j]=0 其他

如:

P a b a b a

j 0 1 2 3 4

next -1 0 0 1 2

即next[j]=k>0時,表示P[0...k-1]=P[j-k,j-1]

因此KMP算法的思想就是:在匹配過程稱,若發生不匹配的情況,如果next[j]>=0,則目標串的指針i不變,將模式串的指針j移動到next[j]的位置繼續進行匹配;若next[j]=-1,則將i右移1位,並將j置0,繼續進行比較。

代碼實現如下:

int KMPMatch(char *s,char *p)
{
int next[100];
int i,j;
i=0;
j=0;
getNext(p,next);
while(i<strlen(s))
{
if(j==-1||s[i]==p[j])
{
i++;
j++;
}
else
{
j=next[j]; //消除了指針i的回溯
}
if(j==strlen(p))
return i-strlen(p);
}
return -1;
}
因此KMP算法的關鍵在於求算next[]數組的值,即求算模式串每個位置處的最長後綴與前綴相同的長度, 而求算next[]數組的值有兩種思路,第一種思路是用遞推的思想去求算,還有一種就是直接去求解。

1.按照遞推的思想:

根據定義next[0]=-1,假設next[j]=k, 即P[0...k-1]==P[j-k,j-1]

1)若P[j]==P[k],則有P[0..k]==P[j-k+1,j],很顯然,next[j+1]=next[j]+1=k+1;

2)若P[j]!=P[k],則可以把其看做模式匹配的問題,即匹配失敗的時候,k值如何移動,顯然k=next[k]。

因此可以這樣去實現:

void getNext(char *p,int *next)
{
int j,k;
next[0]=-1;
j=0;
k=-1;
while(j<strlen(p)-1)
{
if(k==-1||p[j]==p[k]) //匹配的情況下,p[j]==p[k]
{
j++;
k++;
next[j]=k;
}
else //p[j]!=p[k]
k=next[k];
}
}
2.直接求解方法
void getNext(char *p,int *next)
{
int i,j,temp;
for(i=0;i<strlen(p);i++)
{
if(i==0)
{
next[i]=-1; //next[0]=-1
}
else if(i==1)
{
next[i]=0; //next[1]=0
}
else
{
temp=i-1;
for(j=temp;j>0;j--)
{
if(equals(p,i,j))
{
next[i]=j; //找到最大的k值
break;
}
}
if(j==0)
next[i]=0;
}
}
}
bool equals(char *p,int i,int j) //判斷p[0...j-1]與p[i-j...i-1]是否相等
{
int k=0;
int s=i-j;
for(;k<=j-1&&s<=i-1;k++,s++)
{
if(p[k]!=p[s])
return false;
}
return true;
}
發佈了40 篇原創文章 · 獲贊 4 · 訪問量 3萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章