STM32的時鐘系統RCC詳細整理

一、綜述:

1、時鐘源

 STM32 中,一共有 個時鐘源,分別是 HSI  HSE  LSI  LSE  PLL 

 HSI 是高速內部時鐘, RC 振盪器,頻率爲 8MHz 

 HSE 是高速外部時鐘,可接石英 陶瓷諧振器,或者接外部時鐘源,頻率範圍是 4MHz – 16MHz 

 LSI 是低速內部時鐘, RC 振盪器,頻率爲 40KHz 

 LSE 是低速外部時鐘,接頻率爲 32.768KHz 的石英晶體;

 PLL 爲鎖相環倍頻輸出,嚴格的來說並不算一個獨立的時鐘源, PLL 的輸入可以接 HSI/2  HSE 或者 HSE/2 PLL倍頻可選擇爲 2 – 16 ,但是其輸出頻率最大不得超過 72MHz 

其中, 40kHz  LSI 供獨立看門狗 IWDG 使用,另外它還可以被選擇爲實時時鐘 RTC 的時鐘源。另外,實時時鐘RTC 的時鐘源還可以選擇 LSE ,或者是 HSE  128 分頻。

STM32 中有一個全速功能的 USB 模塊,其串行接口引擎需要一個頻率爲 48MHz 的時鐘源。該時鐘源只能從 PLL 端獲取,可以選擇爲 1.5 分頻或者 1 分頻,也就是,當需使用到 USB 模塊時, PLL 必須使能,並且時鐘配置爲 48MHz 72MHz 

另外 STM32 還可以選擇一個時鐘信號輸出到 MCO  (PA.8) 上,可以選擇爲 PLL 輸出的 2 分頻、 HSI  HSE或者系統時鐘。

系統時鐘 SYSCLK ,它是提供 STM32 中絕大部分部件工作的時鐘源。系統時鐘可以選擇爲 PLL 輸出、 HSI  HSE。繫系統時鐘最大頻率爲 72MHz ,它通過 AHB 分頻器分頻後送給各個模塊使用, AHB 分頻器可以選擇 1  2  4 8  16  64  128  256  512 分頻AHB分頻器輸出的時鐘送給 5 大模塊使用:

       送給 AHB 總線、內核、內存和 DMA 使用的 HCLK 時鐘;

       通過 8 分頻後送給 Cortex 的系統定時器時鐘STCLK

       直接送給 Cortex 的空閒運行時鐘 FCLK 

       送給 APB1 分頻器。 APB1 分頻器可以選擇 1  2  4  8  16 分頻,其輸出一路供 APB1 外設使用(PCLK1 最大頻率 36MHz ),另一路送給定時器 (Timer)2  3  4 倍頻器使用。該倍頻器根據PCLK1的分頻值自動選擇 1 或者 2 倍頻,時鐘輸出供定時器 2  3  4 使用。

       送給 APB2 分頻器。 APB2 分頻器可以選擇 1  2  4  8  16 分頻,其輸出一路供 APB2 外設使用(PCLK2 ,最大頻率 72MHz ),另外一路送給定時器 (Timer)1 倍頻使用。該倍頻器根據PCLK2的分頻值自動選擇1  2 倍頻,時鐘輸出供定時器 1 使用。另外 APB2 分頻器還有一路輸出供 ADC 分頻器使用,分頻後送給 ADC 模塊使用。 ADC 分頻器可選擇爲 2  4  6  8 分頻

需要注意的是定時器的倍頻器,當 APB 的分頻爲 1 時,它的倍頻值爲 1 ,否則它的倍頻值就爲 2 

 

2APB1APB2連接的模塊

①連接在 APB1( 低速外設 ) 上的設備有:電源接口、備份接口、 CAN  USB  I2C1  I2C2  UART2 UART3  SPI2 、窗口看門狗、 Timer2  Timer3  Timer4  注意 USB 模塊雖然需要一個單獨的 48MHz 的時鐘信號,但是它應該不是供 USB 模塊工作的時鐘,而只是提供給串行接口引擎 (SIE) 使用的時鐘。 USB 模塊的工作時鐘應該是由 APB1 提供的。

②連接在 APB2 (高速外設)上的設備有: UART1  SPI1  Timer1  ADC1  ADC2  GPIOx(PA~PE) 、第二功能 IO 口。

 

二、寄存器介紹:

typedef struct

{

  __IO uint32_t CR;

  __IO uint32_t CFGR;

  __IO uint32_t CIR;

  __IO uint32_t APB2RSTR;

  __IO uint32_t APB1RSTR;

  __IO uint32_t AHBENR;

  __IO uint32_t APB2ENR;

  __IO uint32_t APB1ENR;

  __IO uint32_t BDCR;

  __IO uint32_t CSR;

#ifdef STM32F10X_CL 

  __IO uint32_t AHBRSTR;

  __IO uint32_t CFGR2;

#endif /* STM32F10X_CL */

#if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL)  

  uint32_t RESERVED0;

  __IO uint32_t CFGR2;

#endif /* STM32F10X_LD_VL || STM32F10X_MD_VL || STM32F10X_HD_VL */

} RCC_TypeDef;

1、時鐘控制寄存器(RCC_CR):(復位值爲0x0000 xx83,內部低速時鐘使能和就緒,內部時鐘校準)

主要功能:內外部高速時鐘的使能和就緒標誌(含內部高速時鐘校準調整),外部高速時鐘旁路,時鐘安全系統CSS使能,PLL使能和PLL就緒標誌

2、時鐘配置寄存器(RCC_CFGR):(復位值爲0x0000 0000

主要功能:系統時鐘源切換及狀態,AHBAPB1APB2ADCUSB預分頻PLL輸入時鐘源選擇及HSE輸入PLL分頻選擇PLL倍頻係數MCOPA8)引腳微控制器時鐘輸出。

3、時鐘中斷寄存器 (RCC_CIR):(復位值: 0x0000 0000

主要功能:LSILSEHISHSEPLL就緒中斷標誌HSE時鐘失效導致時鐘安全系統中斷標誌,LSILSEHISHSEPLL就緒中斷使能,清除LSILSEHISHSEPLL就緒中斷,清除時鐘安全系統中斷。

4APB2外設復位寄存器 (RCC_APB2RSTR):(復位值: 0x0000 0000

主要功能:AFIOIOPAIOPBIOPCIOPDIOPEIOPFIOPGADC1ADC2TIM1SPI1TIM8USART1ADC3復位。

5APB1外設復位寄存器 (RCC_APB1RSTR) :(復位值: 0x0000 0000

主要功能:TIM2TIM3TIM4TIM5TIM6TIM7WWDGSPI2SPI3USART2USART3USART4USART5I2C1I2C2USBCANBKPPWRDAC復位。

6AHB外設時鐘使能寄存器 (RCC_AHBENR) :(復位值: 0x0000 0014睡眠模式時SRAM、閃存接口電路時鐘開啓)

主要功能:DMA1DMA2SRAMFLITFCRCFSMCSDIO時鐘使能

7APB2外設時鐘使能寄存器(RCC_APB2ENR) :(復位值: 0x0000 0000

主要功能:AFIOIOPAIOPBIOPCIOPDIOPEIOPFIOPGADC1ADC2TIM1SPI1TIM8USART1ADC3時鐘使能

8APB1外設時鐘使能寄存器(RCC_APB1ENR) :(復位值: 0x0000 0000

主要功能:TIM2TIM3TIM4TIM5TIM6TIM7WWDGSPI2SPI3USART2USART3USART4USART5I2C1I2C2USBCANBKPPWRDAC時鐘使能

9、備份域控制寄存器 (RCC_BDCR) :(復位值: 0x0000 0000

主要功能:外部低速振盪器使能和就緒標誌及旁路、RTC時鐘源選擇和時鐘使能、備份域軟件復位。

10、控制/狀態寄存器 (RCC_CSR) :(復位值: 0x0C00 0000 NRST引腳復位標誌、上電/掉電覆位標誌)

主要功能:內部低速振盪器就緒、清除復位標誌、NRST引腳復位標誌、上電/掉電覆位標誌、軟件復位標誌、獨立看門狗復位標誌、窗口看門狗復位標誌、低功耗復位標誌。

三、初始化設置

採用8MHz 外部HSE 時鐘,在 MDK 編譯平臺中,程序的時鐘設置參數流程如下:

     RCC 寄存器重新設置爲默認值:RCC_DeInit();

    打開外部高速時鐘晶振 HSE     RCC_HSEConfig(RCC_HSE_ON);

    等待外部高速時鐘晶振工作:       HSEStartUpStatus = RCC_WaitForHSEStartUp();

    設置 AHB 時鐘 (HCLK)           RCC_HCLKConfig(RCC_SYSCLK_Div1);

        設置APB 2時鐘 (APB2)     RCC_PCLK2Config(RCC_HCLK_Div1);

        設置APB1 時鐘 (APB1)     RCC_PCLK1Config(RCC_HCLK_Div2);

        設置 PLL        RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);

    打開 PLL                                   RCC_PLLCmd(ENABLE);

    等待 PLL 工作:    while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);

設置系統時鐘:    RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

判斷 PLL 是否是系統時鐘:        while(RCC_GetSYSCLKSource() != 0x08);

1、使用庫函數進行時鐘系統初始化配置

void RCC_config()//如果外部晶振爲8MPLLCLK=SYSCLK=72MHCLK=72M//P2CLK=72MP1CLK=36MADCCLK=36MUSBCLK=48MTIMCLK=72M

{

       ErrorStatus HSEStartUpStatus; // 定義錯誤狀態變量

       RCC_DeInit();//RCC寄存器重新設置爲默認值

       RCC_HSEConfig(RCC_HSE_ON); //打開外部高速時鐘晶振

       HSEStartUpStatus = RCC_WaitForHSEStartUp();// 等待外部高速時鐘晶振工作

       if(HSEStartUpStatus == SUCCESS)

       {

       RCC_HCLKConfig(RCC_SYSCLK_Div1);//設置AHB不分頻,HCLK=SYSCLK

       RCC_PCLK2Config(RCC_HCLK_Div1);//設置APB2不分頻,P2CLK=HCLK

       RCC_PCLK1Config(RCC_HCLK_Div2); //設置APB1 2分頻,P1CLK=HCLK/2

       FLASH_SetLatency(FLASH_Latency_2);//設置FLASH代碼延時

       FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);//使能預取指緩存

       RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);//設置PLL時鐘源,

//外部時鐘不分頻,爲HSE9倍頻8MHz * 9 = 72MHz

       RCC_PLLCmd(ENABLE);//使能PLL

       while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);//等待PLL準備就緒

       RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);//設置PLL爲系統時鐘源

       while(RCC_GetSYSCLKSource() != 0x08);//判斷PLL是否是系統時鐘

       }

            /*RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOD, ENABLE); // 打開 PB  PD 用於點亮 LED */

}

2、使用寄存器進行RCC時鐘初始化配置

void RCC_init(u8 PLL)//輸入PLL的倍頻值216倍頻

//HCLK=PLLCLK=SYSCLK=P2CLK=P1CLK*2=ADCCLK*2=TIMCLK=USBCLK*2/3

{

       unsigned char temp=0;  

       //RCC_DeInit();              //RCC寄存器重新設置爲默認值

       RCC->CR|=0x00010000;  //外部高速時鐘使能HSEON

       while(!(RCC->CR>>17));//等待外部時鐘就緒

       RCC->CFGR=0X00000400; //APB1=DIV2;APB2=DIV1;AHB=DIV1;

       PLL-=2;//抵消2個單位

       RCC->CFGR|=PLL<<18;   //設置PLL倍頻值 2~16

       RCC->CFGR|=1<<16;     //PLL時鐘源選擇

       FLASH->ACR|=0x32;     //FLASH 2個延時週期

       RCC->CR|=0x01000000;  //PLLON

       while(!(RCC->CR>>25));//等待PLL鎖定

       RCC->CFGR|=0x00000002;//PLL作爲系統時鐘      

       while(temp!=0x02)     //等待PLL作爲系統時鐘設置成功

       {  

              temp=RCC->CFGR>>2;

              temp&=0x03;

       }   

}

四、相關庫函數解析

1、庫中所涉及到的結構體

typedef struct

{

  uint32_t SYSCLK_Frequency;  /*!< returns SYSCLK clock frequency expressed in Hz */

  uint32_t HCLK_Frequency;    /*!< returns HCLK clock frequency expressed in Hz */

  uint32_t PCLK1_Frequency;   /*!< returns PCLK1 clock frequency expressed in Hz */

  uint32_t PCLK2_Frequency;   /*!< returns PCLK2 clock frequency expressed in Hz */

  uint32_t ADCCLK_Frequency; /*!< returns ADCCLK clock frequency expressed in Hz */

}RCC_ClocksTypeDef;

2、庫函數解析

void RCC_DeInit(void);//將外設RCC寄存器設爲缺省值;(除RCC_BDCRRCC_CSR

void RCC_HSEConfig(uint32_t RCC_HSE);//設置外部高速晶振(HSE);

//輸入:RCC_HSE_OFFRCC_HSE_ONRCC_HSE_Bypass(HSE旁路)

ErrorStatus RCC_WaitForHSEStartUp(void);//等待HSE起振;

//返回值:SUCCESS,HSE晶振穩定且就緒;ERRORHSE晶振未就緒

void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue);//調整內部高速晶振(HSI)校準值

//輸入:校準補償值(該參數取值必須在00x1F之間)

void RCC_HSICmd(FunctionalState NewState);//使能或者失能內部高速晶振(HSI

//輸入:ENABLE或者DISABLE(如果HSI被用於系統時鐘,或者FLASH編寫操作進行中,那麼它不能被停振)

void RCC_PLLConfig(uint32_t RCC_PLLSource, uint32_t RCC_PLLMul);//設置PLL時鐘源及倍頻係數

//輸入:RCC_PLLSource_HSI_Div2RCC_PLLSource_HSE_Div1RCC_PLLSource_HSE_Div2

//輸入:RCC_PLLMul_2RCC_PLLMul_16

void RCC_PLLCmd(FunctionalState NewState);// 使能或者失能PLL

//輸入:ENABLE或者DISABLE

#if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) || defined (STM32F10X_CL)

 void RCC_PREDIV1Config(uint32_t RCC_PREDIV1_Source, uint32_t RCC_PREDIV1_Div);//

#endif

#ifdef  STM32F10X_CL

 void RCC_PREDIV2Config(uint32_t RCC_PREDIV2_Div);//

 void RCC_PLL2Config(uint32_t RCC_PLL2Mul);//

 void RCC_PLL2Cmd(FunctionalState NewState);//

 void RCC_PLL3Config(uint32_t RCC_PLL3Mul);//

 void RCC_PLL3Cmd(FunctionalState NewState);//

#endif /* STM32F10X_CL */

void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource);//設置系統時鐘(SYSCLK)

// RCC_SYSCLKSource_HSIRCC_SYSCLKSource_HSERCC_SYSCLKSource_PLLCLK

uint8_t RCC_GetSYSCLKSource(void);// 返回用作系統時鐘的時鐘源

//返回值:0x00 HSI作爲系統時鐘,0x04 HSE作爲系統時鐘,0x08 PLL作爲系統時鐘

void RCC_HCLKConfig(uint32_t RCC_SYSCLK);//設置AHB時鐘(HCLK

//輸入:RCC_SYSCLK_Div1RCC_SYSCLK_Div2RCC_SYSCLK_Div4RCC_SYSCLK_Div8RCC_SYSCLK_Div16

//RCC_SYSCLK_Div32RCC_SYSCLK_Div64RCC_SYSCLK_Div128RCC_SYSCLK_Div256RCC_SYSCLK_Div512

void RCC_PCLK1Config(uint32_t RCC_HCLK);// 設置低速AHB時鐘(PCLK1

//輸入: RCC_HCLK_Div1, RCC_HCLK_Div2, RCC_HCLK_Div4, RCC_HCLK_Div8, RCC_HCLK_Div16

void RCC_PCLK2Config(uint32_t RCC_HCLK);// 設置高速AHB時鐘(PCLK2

//輸入:RCC_HCLK_Div1, RCC_HCLK_Div2, RCC_HCLK_Div4, RCC_HCLK_Div8, RCC_HCLK_Div16

void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState);// 使能或者失能指定的RCC中斷

//輸入:RCC_IT_LSIRDY  LSI就緒中斷->ENABLE或者DISABLE

//RCC_IT_LSERDY  LSE就緒中斷,RCC_IT_HSIRDY  HSI就緒中斷

//RCC_IT_HSERDY  HSE就緒中斷,RCC_IT_PLLRDY  PLL就緒中斷

#ifndef STM32F10X_CL

 void RCC_USBCLKConfig(uint32_t RCC_USBCLKSource);// 設置USB時鐘(USBCLK

//輸入:RCC_USBCLKSource_PLLCLK_1Div5USB時鐘 = PLL時鐘除以1.5

RCC_USBCLKSource_PLLCLK_Div1USB時鐘 = PLL時鐘

#else

 void RCC_OTGFSCLKConfig(uint32_t RCC_OTGFSCLKSource);//

#endif /* STM32F10X_CL */

void RCC_ADCCLKConfig(uint32_t RCC_PCLK2);// 設置ADC時鐘(ADCCLK

//RCC_PCLK2_Div2,ADC時鐘 = PCLK / 2;RCC_PCLK2_Div4,ADC時鐘 = PCLK / 4;

//RCC_PCLK2_Div6,ADC時鐘 = PCLK / 6;RCC_PCLK2_Div8,ADC時鐘 = PCLK / 8

#ifdef STM32F10X_CL

 void RCC_I2S2CLKConfig(uint32_t RCC_I2S2CLKSource); //                                

 void RCC_I2S3CLKConfig(uint32_t RCC_I2S3CLKSource);//

#endif /* STM32F10X_CL */

void RCC_LSEConfig(uint8_t RCC_LSE);// 設置外部低速晶振(LSE

//輸入:RCC_LSE_OFF,LSE晶振OFF;RCC_LSE_ON,LSE晶振ON;

//RCC_LSE_Bypass,LSE晶振被外部時鐘旁路

void RCC_LSICmd(FunctionalState NewState);// 使能或者失能內部低速晶振(LSI

//輸入:ENABLE或者DISABLE   (IWDG運行的話,LSI不能被失能)

void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource);//設置RTC時鐘(RTCCLK)(RTC時鐘一經選定即不能更改,除非復位後備域)

//輸入:RCC_RTCCLKSource_LSE,選擇LSE作爲RTC時鐘;RCC_RTCCLKSource_LSI,選擇LSI作爲RTC時鐘;RCC_RTCCLKSource_HSE_Div128,選擇HSE時鐘頻率除以128作爲RTC時鐘

void RCC_RTCCLKCmd(FunctionalState NewState);// 使能或者失能RTC時鐘

//輸入:ENABLE或者DISABLE

void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks);// 返回時鐘的頻率

//輸入:指向結構RCC_ClocksTypeDef的指針,包含了各個時鐘的頻率(單位爲Hz

void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState);// 使能或者失能AHB外設時鐘

//輸入:RCC_AHBPeriph_DMADMA時鐘->ENABLE或者DISABLE

//RCC_AHBPeriph_SRAMSRAM時鐘;RCC_AHBPeriph_FLITFFLITF時鐘

//RCC_AHBPeriph_DMA1DMA1時鐘;RCC_AHBPeriph_DMA2DMA2時鐘

//RCC_AHBPeriph_CRCCRC時鐘;RCC_AHBPeriph_FSMCFSMC時鐘

//RCC_AHBPeriph_SDIOSDIO時鐘

void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState);// 使能或者失能APB2外設時鐘

//輸入:RCC_APB2Periph_AFIO,功能複用IO時鐘->ENABLE或者DISABLE

//RCC_APB2Periph_GPIOAGPIOA時鐘;RCC_APB2Periph_GPIOB,GPIOB時鐘;

//RCC_APB2Periph_GPIOC,GPIOC時鐘;RCC_APB2Periph_GPIOD,GPIOD時鐘;

//RCC_APB2Periph_GPIOE,GPIOE時鐘;RCC_APB2Periph_ADC1,ADC1時鐘;

//RCC_APB2Periph_ADC2,ADC2時鐘;RCC_APB2Periph_TIM1,TIM1時鐘;

//RCC_APB2Periph_SPI1,SPI1時鐘;RCC_APB2Periph_USART1,USART1時鐘;

//RCC_APB2Periph_ALL,全部APB2外設時鐘

void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState);// 使能或者失能APB1外設時鐘

//輸入:RCC_APB1Periph_TIM2TIM2時鐘->ENABLE或者DISABLE;

//RCC_APB1Periph_TIM3,TIM3時鐘;RCC_APB1Periph_TIM4,TIM4時鐘

//RCC_APB1Periph_WWDG,WWDG時鐘;RCC_APB1Periph_SPI2,SPI2時鐘

//RCC_APB1Periph_USART2,USART2時鐘;RCC_APB1Periph_USART3,USART3時鐘

//RCC_APB1Periph_I2C1,I2C1時鐘;RCC_APB1Periph_I2C2,I2C2時鐘

//RCC_APB1Periph_USB,USB時鐘;RCC_APB1Periph_CAN,CAN時鐘

//RCC_APB1Periph_BKP,BKP時鐘;RCC_APB1Periph_PWR,PWR時鐘

//RCC_APB1Periph_ALL,全部APB1外設時鐘

#ifdef STM32F10X_CL

void RCC_AHBPeriphResetCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState);//

#endif /* STM32F10X_CL */

void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState);// 強制或者釋放高速APBAPB2)外設復位

//輸入:同void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState);函數的值

void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState);// 強制或者釋放低速APBAPB1)外設復位

//輸入:同void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState);函數的值

//例:/* Enter the SPI1 peripheral to reset */

//RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1, ENABLE);

/* Exit the SPI1 peripheral from reset */

//RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1, DISABLE);

void RCC_BackupResetCmd(FunctionalState NewState);// 強制或者釋放後備域復位

void RCC_ClockSecuritySystemCmd(FunctionalState NewState);//使能或者失能時鐘安全系統

//輸入:ENABLE或者DISABLE

void RCC_MCOConfig(uint8_t RCC_MCO);// 選擇在MCO管腳上輸出的時鐘源

//輸入:RCC_MCO_NoClock 無時鐘被選中 ;RCC_MCO_SYSCLK 選中系統時鐘;

//RCC_MCO_HSI 選中HSI RCC_MCO_HSE 選中HSE 

//RCC_MCO_PLLCLK_Div2 選中PLL時鐘除以2

//警告:當選中系統時鐘作爲MCO管腳的輸出時,注意它的時鐘頻率不超過50MHz(最大I/O速率)

FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG);// 檢查指定的RCC標誌位設置與否

//輸入:待檢查的RCC標誌位


//RCC_FLAG_HSIRDY HSI晶振就緒RCC_FLAG_HSERDY HSE晶振就緒;

//RCC_FLAG_PLLRDY PLL就緒RCC_FLAG_LSERDY LSI晶振就緒;

//RCC_FLAG_LSIRDY LSE晶振就緒RCC_FLAG_PINRST 管腳復位 ;

//RCC_FLAG_PORRST POR/PDR復位RCC_FLAG_SFTRST 軟件復位 ;

//RCC_FLAG_IWDGRST IWDG復位RCC_FLAG_WWDGRST WWDG復位;

//RCC_FLAG_LPWRRST 低功耗復位

//返回值:RCC_FLAG的新狀態(SET或者RESET

//例:/* Test if the PLL clock is ready or not */

//FlagStatus Status;

//Status = RCC_GetFlagStatus(RCC_FLAG_PLLRDY);

//if(Status == RESET)

//{

//...

//}

//else

void RCC_ClearFlag(void);// 清除RCC的復位標誌位

//(可以清除的復位標誌位有:RCC_FLAG_PINRST, RCC_FLAG_PORRST, //RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST)

ITStatus RCC_GetITStatus(uint8_t RCC_IT);// 檢查指定的RCC中斷髮生與否

//輸入:RCC_IT_LSIRDYLSI晶振就緒中斷;RCC_IT_LSERDYLSE晶振就緒中斷

//RCC_IT_HSIRDYHSI晶振就緒中斷;RCC_IT_HSERDYHSE晶振就緒中斷

//RCC_IT_PLLRDYPLL就緒中斷;RCC_IT_CSS,時鐘安全系統中斷

//返回值:RCC_IT的新狀態

//例:

/* Test if the PLL Ready interrupt has occurred or not */

//ITStatus Status;

//Status = RCC_GetITStatus(RCC_IT_PLLRDY);

//if(Status == RESET)

//{

//...

//}

//else

//{

//...

//}

void RCC_ClearITPendingBit(uint8_t RCC_IT);// 清除RCC的中斷待處理位

//RCC_IT_LSIRDY,LSI晶振就緒中斷;RCC_IT_LSERDY,LSE晶振就緒中斷

//RCC_IT_HSIRDY,HSI晶振就緒中斷;RCC_IT_HSERDY,HSE晶振就緒中斷

//RCC_IT_PLLRDY,PLL就緒中斷;RCC_IT_CSS,時鐘安全系統中斷

五、實例詳解

#if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)//如果定義了這些系統時鐘將設爲24M,如果沒有定義則爲72M
/* #define SYSCLK_FREQ_HSE    HSE_VALUE */
 #define SYSCLK_FREQ_24MHz  24000000
#else
/* #define SYSCLK_FREQ_HSE    HSE_VALUE */
/* #define SYSCLK_FREQ_24MHz  24000000 */ 
/* #define SYSCLK_FREQ_36MHz  36000000 */
/* #define SYSCLK_FREQ_48MHz  48000000 */
/* #define SYSCLK_FREQ_56MHz  56000000 */
#define SYSCLK_FREQ_72MHz  72000000      //
系統時鐘默認值的定義 ,如果沒有定義外部高速時鐘則用內部高速時鐘,爲8000000

/*只需修改以上幾句就可以自動設置使用外部倍頻作爲系統時鐘,如果以上宏都未定義則在下邊把內部高速時鐘作爲系統時鐘*/
#endif

/*!< Uncomment the following line if you need to use external SRAM mounted
     on STM3210E-EVAL board (STM32 High density and XL-density devices) or on 
     STM32100E-EVAL board (STM32 High-density value line devices) as data memory */ 
#if defined (STM32F10X_HD) || (defined STM32F10X_XL) || (defined STM32F10X_HD_VL)//
內外部SRAM選擇
/* #define DATA_IN_ExtSRAM */
#endif

/*!< Uncomment the following line if you need to relocate your vector Table in
     Internal SRAM. */ 
/* #define VECT_TAB_SRAM */
#define VECT_TAB_OFFSET  0x0 /*!< Vector Table base offset field. //
向量表的基址偏移量
                                  This value must be a multiple of 0x100. */


/*******************************************************************************
*  Clock Definitions;
以下爲把系統時鐘的定義值傳給系統內核時鐘變量,如果沒有定義外部高速時鐘則用內部高速時鐘,爲8M
*******************************************************************************/
#ifdef SYSCLK_FREQ_HSE
  uint32_t SystemCoreClock         = SYSCLK_FREQ_HSE;        /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_24MHz
  uint32_t SystemCoreClock         = SYSCLK_FREQ_24MHz;        /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_36MHz
  uint32_t SystemCoreClock         = SYSCLK_FREQ_36MHz;        /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_48MHz
  uint32_t SystemCoreClock         = SYSCLK_FREQ_48MHz;        /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_56MHz
  uint32_t SystemCoreClock         = SYSCLK_FREQ_56MHz;        /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_72MHz
  uint32_t SystemCoreClock         = SYSCLK_FREQ_72MHz;        /*!< System Clock Frequency (Core Clock) */
#else /*!< HSI Selected as System Clock source */
  uint32_t SystemCoreClock         = HSI_VALUE;        /*!< System Clock Frequency (Core Clock) 
如果沒有定義外部高速時鐘則用內部高速時鐘,爲8000000*/
#endif

__I uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};//AHB配方表
/**
  * @}
  */

/** @addtogroup STM32F10x_System_Private_FunctionPrototypes
  * @{
  */
/*********************************************************************************
               
以下爲函數聲明
*********************************************************************************/
static void SetSysClock(void); //
設置系統時鐘的函數聲明
//
以下爲根據不同的系統時鐘的定義來聲明用到的相應的函數,爲後面的函數調用做好準備
#ifdef SYSCLK_FREQ_HSE
  static void SetSysClockToHSE(void);
#elif defined SYSCLK_FREQ_24MHz
  static void SetSysClockTo24(void);
#elif defined SYSCLK_FREQ_36MHz
  static void SetSysClockTo36(void);
#elif defined SYSCLK_FREQ_48MHz
  static void SetSysClockTo48(void);
#elif defined SYSCLK_FREQ_56MHz
  static void SetSysClockTo56(void);  
#elif defined SYSCLK_FREQ_72MHz
  static void SetSysClockTo72(void);
#endif

#ifdef DATA_IN_ExtSRAM //外部SRAM選擇後的初始化函數聲明
  static void SystemInit_ExtMemCtl(void); 
#endif /* DATA_IN_ExtSRAM */

/**
  * @}
  */

/** @addtogroup STM32F10x_System_Private_Functions
  * @{
  */

/**
  * @brief  Setup the microcontroller system
  *         Initialize the Embedded Flash Interface, the PLL and update the 
  *         SystemCoreClock variable.
  * @note   This function should be used only after reset.
  * @param  None
  * @retval None
  */
void SystemInit (void)//
系統初始化函數,設置系統的時鐘及時鐘中斷(在startup_stm32f10x_md.s中調用)(復位RCC時鐘配置爲默認狀態,直到設置時鐘函數)
{
  /* Reset the RCC clock configuration to the default reset state(for debug purpose) */
  /* Set HSION bit */
  RCC->CR |= (uint32_t)0x00000001; //
內部高速時鐘使能,內部8MHz時鐘開啓

  /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */
#ifndef STM32F10X_CL
  RCC->CFGR &= (uint32_t)0xF8FF0000;//MCO
微控制器沒有時鐘輸出(對外部引腳),ADC預分頻PCLK2 2分頻後作爲ADC時鐘,APB預分頻HCLK不分頻,AHB預分頻SYSCLK不分頻,HSI作爲系統時鐘
                                    //HSI
作爲系統時鐘輸出(已輸出),SYSCLK=PCLK=PCLK1=PCLK2=8MADCCLK=1/2(PCLK2)=4M
#else
  RCC->CFGR &= (uint32_t)0xF0FF0000;//
同上;RCC->CFGR27位爲保留位始終爲HSI作爲系統時鐘輸出(未輸出原因爲未編譯)
#endif /* STM32F10X_CL */   
  
  /* Reset HSEON, CSSON and PLLON bits */
  RCC->CR &= (uint32_t)0xFEF6FFFF;//
時鐘監測器關閉,HSE振盪器關閉

  /* Reset HSEBYP bit */
  RCC->CR &= (uint32_t)0xFFFBFFFF;//
外部4-25MHz振盪器沒有旁路

  /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */
  RCC->CFGR &= (uint32_t)0xFF80FFFF; //PLL
時鐘1.5倍分頻作爲USB時鐘,PLL 2倍頻輸出,HSE不分頻,HSI時鐘2分頻後作爲PLL輸入時鐘
                                     //PLLCLK=HSICLK=8M
(還未輸出),HSECLK=HSEOSC,USBCLK=PLLCLK/1.5 ,除PLL外其他分頻係數都爲0
#ifdef STM32F10X_CL
  /* Reset PLL2ON and PLL3ON bits */
  RCC->CR &= (uint32_t)0xEBFFFFFF;//CR
中的2628位置0

  /* Disable all interrupts and clear pending bits  */
  RCC->CIR = 0x00FF0000;//
清除中斷標誌,關閉一些中斷

  /* Reset CFGR2 register */
  RCC->CFGR2 = 0x00000000; //
沒有此寄存器
#elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
  /* Disable all interrupts and clear pending bits  */
  RCC->CIR = 0x009F0000;//
清除中斷標誌,關閉一些中斷

  /* Reset CFGR2 register */
  RCC->CFGR2 = 0x00000000; //
沒有此寄存器     
#else
  /* Disable all interrupts and clear pending bits  */
  RCC->CIR = 0x009F0000; //
清除中斷標誌,關閉一些中斷
#endif /* STM32F10X_CL */
    
#if defined (STM32F10X_HD) || (defined STM32F10X_XL) || (defined STM32F10X_HD_VL)
  #ifdef DATA_IN_ExtSRAM
    SystemInit_ExtMemCtl();//
如果宏定義了外部SRAM則對其初始化控制
  #endif /* DATA_IN_ExtSRAM */
#endif

  /* Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers */
  /* Configure the Flash Latency cycles and enable prefetch buffer */
  SetSysClock();//
設置系統時鐘

#ifdef VECT_TAB_SRAM
  SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. 
向量表放在內部SRAM*/
#else
  SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. 
向量表放在內部flash*/
#endif 
}

/**
  * @brief  Update SystemCoreClock according to Clock Register Values
  * @note   None
  * @param  None
  * @retval None
  */
void SystemCoreClockUpdate (void)
{
  uint32_t tmp = 0, pllmull = 0, pllsource = 0;

#ifdef  STM32F10X_CL
  uint32_t prediv1source = 0, prediv1factor = 0, prediv2factor = 0, pll2mull = 0;
#endif /* STM32F10X_CL */

#if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
  uint32_t prediv1factor = 0;
#endif /* STM32F10X_LD_VL or STM32F10X_MD_VL or STM32F10X_HD_VL */
    
  /* Get SYSCLK source -------------------------------------------------------*/
  tmp = RCC->CFGR & RCC_CFGR_SWS;
  
  switch (tmp)
  {
    case 0x00:  /* HSI used as system clock */
      SystemCoreClock = HSI_VALUE;
      break;
    case 0x04:  /* HSE used as system clock */
      SystemCoreClock = HSE_VALUE;
      break;
    case 0x08:  /* PLL used as system clock */

      /* Get PLL clock source and multiplication factor ----------------------*/
      pllmull = RCC->CFGR & RCC_CFGR_PLLMULL;
      pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
      
#ifndef STM32F10X_CL      
      pllmull = ( pllmull >> 18) + 2;
      
      if (pllsource == 0x00)
      {
        /* HSI oscillator clock divided by 2 selected as PLL clock entry */
        SystemCoreClock = (HSI_VALUE >> 1) * pllmull;
      }
      else
      {
 #if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
       prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1;
       /* HSE oscillator clock selected as PREDIV1 clock entry */
       SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; 
 #else
        /* HSE selected as PLL clock entry */
        if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET)
        {/* HSE oscillator clock divided by 2 */
          SystemCoreClock = (HSE_VALUE >> 1) * pllmull;
        }
        else
        {
          SystemCoreClock = HSE_VALUE * pllmull;
        }
 #endif
      }
#else
      pllmull = pllmull >> 18;
      
      if (pllmull != 0x0D)
      {
         pllmull += 2;
      }
      else
      { /* PLL multiplication factor = PLL input clock * 6.5 */
        pllmull = 13 / 2; 
      }
            
      if (pllsource == 0x00)
      {
        /* HSI oscillator clock divided by 2 selected as PLL clock entry */
        SystemCoreClock = (HSI_VALUE >> 1) * pllmull;
      }
      else
      {/* PREDIV1 selected as PLL clock entry */
        
        /* Get PREDIV1 clock source and division factor */
        prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC;
        prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1;
        
        if (prediv1source == 0)
        { 
          /* HSE oscillator clock selected as PREDIV1 clock entry */
          SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull;          
        }
        else
        {/* PLL2 clock selected as PREDIV1 clock entry */
          
          /* Get PREDIV2 division factor and PLL2 multiplication factor */
          prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4) + 1;
          pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8 ) + 2; 
          SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull;                         
        }
      }
#endif /* STM32F10X_CL */ 
      break;

    default:
      SystemCoreClock = HSI_VALUE;
      break;
  }
  
  /* Compute HCLK clock frequency ----------------*/
  /* Get HCLK prescaler */
  tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)];
  /* HCLK clock frequency */
  SystemCoreClock >>= tmp;  
}

/**
  * @brief  Configures the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers.
  * @param  None
  * @retval None
  */
static void SetSysClock(void)//
根據不同的宏定義,設置不同的系統時鐘
{  
#ifdef SYSCLK_FREQ_HSE
  SetSysClockToHSE();
#elif defined SYSCLK_FREQ_24MHz
  SetSysClockTo24();
#elif defined SYSCLK_FREQ_36MHz
  SetSysClockTo36();
#elif defined SYSCLK_FREQ_48MHz
  SetSysClockTo48();
#elif defined SYSCLK_FREQ_56MHz
  SetSysClockTo56();  
#elif defined SYSCLK_FREQ_72MHz
  SetSysClockTo72(); 
#endif
 
 /* If none of the define above is enabled, the HSI is used as System clock
    source (default after reset) */ 
}

/**
  * @brief  Setup the external memory controller. Called in startup_stm32f10x.s 
  *          before jump to __main
  * @param  None
  * @retval None
  */ 
#ifdef DATA_IN_ExtSRAM
/**
  * @brief  Setup the external memory controller. 
  *         Called in startup_stm32f10x_xx.s/.c before jump to main.
  *        This function configures the external SRAM mounted on STM3210E-EVAL
  *         board (STM32 High density devices). This SRAM will be used as program
  *         data memory (including heap and stack).
  * @param  None
  * @retval None
  */ 
void SystemInit_ExtMemCtl(void) 
{
/*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is 
  required, then adjust the Register Addresses */

  /* Enable FSMC clock */
  RCC->AHBENR = 0x00000114;
  
  /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */  
  RCC->APB2ENR = 0x000001E0;
  
/* ---------------  SRAM Data lines, NOE and NWE configuration ---------------*/
/*----------------  SRAM Address lines configuration -------------------------*/
/*----------------  NOE and NWE configuration --------------------------------*/  
/*----------------  NE3 configuration ----------------------------------------*/
/*----------------  NBL0, NBL1 configuration ---------------------------------*/
  
  GPIOD->CRL = 0x44BB44BB;  
  GPIOD->CRH = 0xBBBBBBBB;

  GPIOE->CRL = 0xB44444BB;  
  GPIOE->CRH = 0xBBBBBBBB;

  GPIOF->CRL = 0x44BBBBBB;  
  GPIOF->CRH = 0xBBBB4444;

  GPIOG->CRL = 0x44BBBBBB;  
  GPIOG->CRH = 0x44444B44;
   
/*----------------  FSMC Configuration ---------------------------------------*/  
/*----------------  Enable FSMC Bank1_SRAM Bank ------------------------------*/
  
  FSMC_Bank1->BTCR[4] = 0x00001011;
  FSMC_Bank1->BTCR[5] = 0x00000200;
}
#endif /* DATA_IN_ExtSRAM */

#ifdef SYSCLK_FREQ_HSE
/**
  * @brief  Selects HSE as System clock source and configure HCLK, PCLK2
  *          and PCLK1 prescalers.
  * @note   This function should be used only after reset.
  * @param  None
  * @retval None
  */
static void SetSysClockToHSE(void)
{
  __IO uint32_t StartUpCounter = 0, HSEStatus = 0;
  
  /* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/    
  /* Enable HSE */    
  RCC->CR |= ((uint32_t)RCC_CR_HSEON);
 
  /* Wait till HSE is ready and if Time out is reached exit */
  do
  {
    HSEStatus = RCC->CR & RCC_CR_HSERDY;
    StartUpCounter++;  
  } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));

  if ((RCC->CR & RCC_CR_HSERDY) != RESET)
  {
    HSEStatus = (uint32_t)0x01;
  }
  else
  {
    HSEStatus = (uint32_t)0x00;
  } 

  if (HSEStatus == (uint32_t)0x01)
  {

#if !defined STM32F10X_LD_VL && !defined STM32F10X_MD_VL && !defined STM32F10X_HD_VL
    /* Enable Prefetch Buffer */
    FLASH->ACR |= FLASH_ACR_PRFTBE;

    /* Flash 0 wait state */
    FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);

#ifndef STM32F10X_CL
    FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_0;
#else
    if (HSE_VALUE <= 24000000)
 {
      FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_0;
 }
 else
 {
      FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_1;
 }
#endif /* STM32F10X_CL */
#endif
 
    /* HCLK = SYSCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
      
    /* PCLK2 = HCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;
    
    /* PCLK1 = HCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV1;
    
    /* Select HSE as system clock source */
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
    RCC->CFGR |= (uint32_t)RCC_CFGR_SW_HSE;   

    /* Wait till HSE is used as system clock source */
    while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x04)
    {
    }
  }
  else
  { /* If HSE fails to start-up, the application will have wrong clock 
         configuration. User can add here some code to deal with this error */
  }  
}
#elif defined SYSCLK_FREQ_24MHz

static void SetSysClockTo72(void)//系統時鐘設置爲72MSYSCLK=72MHCLK=72MPCLK1=36M(最高36M),PCLK2=72MADCCLK=36M,
{
  __IO uint32_t StartUpCounter = 0, HSEStatus = 0;//
啓動計數,HSE狀態
  
  /* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/    
  /* Enable HSE */    
  RCC->CR |= ((uint32_t)RCC_CR_HSEON);//HSE
使能
 
  /* Wait till HSE is ready and if Time out is reached exit */
  do //
循環,直到HSE使能成功或者超時
  {
    HSEStatus = RCC->CR & RCC_CR_HSERDY;
    StartUpCounter++;  
  } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));

  if ((RCC->CR & RCC_CR_HSERDY) != RESET)
  {
    HSEStatus = (uint32_t)0x01;//HSE
使能成功
  }
  else
  {
    HSEStatus = (uint32_t)0x00;//HSE
使能不成功
  } 

  if (HSEStatus == (uint32_t)0x01)//HSE使能成功
  {
    /* Enable Prefetch Buffer */
    FLASH->ACR |= FLASH_ACR_PRFTBE;//flash
緩存使能

    /* Flash 2 wait state */
    FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);//
    FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;//   

 
    /* HCLK = SYSCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;//RCC_CFGR_HPRE_DIV1=0
CFGR中的值不變
      
    /* PCLK2 = HCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;//RCC_CFGR_PPRE2_DIV1=0
CFGR中的值不變
    
    /* PCLK1 = HCLK/2 */
    RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;//
低速APB預分頻把HCLK 2分頻,APB1CLK=HCLK/2

#ifdef STM32F10X_CL
    /* Configure PLLs ------------------------------------------------------*/
    /* PLL2 configuration: PLL2CLK = (HSE / 5) * 8 = 40 MHz */
    /* PREDIV1 configuration: PREDIV1CLK = PLL2 / 5 = 8 MHz */
        
    RCC->CFGR2 &= (uint32_t)~(RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL2MUL |
                              RCC_CFGR2_PREDIV1 | RCC_CFGR2_PREDIV1SRC);
    RCC->CFGR2 |= (uint32_t)(RCC_CFGR2_PREDIV2_DIV5 | RCC_CFGR2_PLL2MUL8 |
                             RCC_CFGR2_PREDIV1SRC_PLL2 | RCC_CFGR2_PREDIV1_DIV5);
  
    /* Enable PLL2 */
    RCC->CR |= RCC_CR_PLL2ON;
    /* Wait till PLL2 is ready */
    while((RCC->CR & RCC_CR_PLL2RDY) == 0)
    {
    }
    
   
    /* PLL configuration: PLLCLK = PREDIV1 * 9 = 72 MHz */ 
    RCC->CFGR &= (uint32_t)~(RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL);
    RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLSRC_PREDIV1 | 
                            RCC_CFGR_PLLMULL9); 
#else    
    /*  PLL configuration: PLLCLK = HSE * 9 = 72 MHz */
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE |  //PLL
輸入時鐘源HSI時鐘2分頻後作爲PLL輸入時鐘,HSE分頻器作爲PLL輸入HSE不分頻 
                                        RCC_CFGR_PLLMULL)); //PLL
倍頻係數PLL 2倍頻輸出(爲了清零其他位)
    RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL9);//PLL
輸入時鐘源HSE時鐘作爲PLL輸入時鐘,PLL倍頻係數PLL 9倍頻輸出 
#endif /* STM32F10X_CL */

    /* Enable PLL */
    RCC->CR |= RCC_CR_PLLON; //PLL
使能

    /* Wait till PLL is ready */
    while((RCC->CR & RCC_CR_PLLRDY) == 0)//
等待PLL使能成功
    {
    }
    
    /* Select PLL as system clock source */
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));//HSI
作爲系統時鐘(爲了清零其他位)
    RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL; //PLL
輸出作爲系統時鐘  

    /* Wait till PLL is used as system clock source */
    while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)//
等待直到PLL成功用作系統時鐘源
    {
    }
  }
  else
  { /* If HSE fails to start-up, the application will have wrong clock 
         configuration. User can add here some code to deal with this error */
  }
}
#endif


發佈了28 篇原創文章 · 獲贊 15 · 訪問量 12萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章