堆排序

堆排序快速排序歸併排序一樣都是時間複雜度爲O(N*logN)的幾種常見排序方法。學習堆排序前,先講解下什麼是數據結構中的二叉堆。

二叉堆的定義

二叉堆是完全二叉樹或者是近似完全二叉樹。

二叉堆滿足二個特性:

1.父結點的鍵值總是大於或等於(小於或等於)任何一個子節點的鍵值。

2.每個結點的左子樹和右子樹都是一個二叉堆(都是最大堆或最小堆)。

當父結點的鍵值總是大於或等於任何一個子節點的鍵值時爲最大堆。當父結點的鍵值總是小於或等於任何一個子節點的鍵值時爲最小堆。下圖展示一個最小堆:

由於其它幾種堆(二項式堆,斐波納契堆等)用的較少,一般將二叉堆就簡稱爲堆。

堆的存儲

一般都用數組來表示堆,i結點的父結點下標就爲(i – 1) / 2。它的左右子結點下標分別爲2 * i + 1和2 * i + 2。如第0個結點左右子結點下標分別爲1和2。

堆的操作——插入刪除

下面先給出《數據結構C++語言描述》中最小堆的建立插入刪除的圖解,再給出本人的實現代碼,最好是先看明白圖後再去看代碼。

堆的插入

每次插入都是將新數據放在數組最後。可以發現從這個新數據的父結點到根結點必然爲一個有序的數列,現在的任務是將這個新數據插入到這個有序數據中——這就類似於直接插入排序中將一個數據併入到有序區間中,對照《白話經典算法系列之二 直接插入排序的三種實現》不難寫出插入一個新數據時堆的調整代碼:

  1. //  新加入i結點  其父結點爲(i - 1) / 2  
  2. void MinHeapFixup(int a[], int i)  
  3. {  
  4.     int j, temp;  
  5.       
  6.     temp = a[i];  
  7.     j = (i - 1) / 2;      //父結點  
  8.     while (j >= 0 && i != 0)  
  9.     {  
  10.         if (a[j] <= temp)  
  11.             break;  
  12.           
  13.         a[i] = a[j];     //把較大的子結點往下移動,替換它的子結點  
  14.         i = j;  
  15.         j = (i - 1) / 2;  
  16.     }  
  17.     a[i] = temp;  
  18. }  

更簡短的表達爲:

  1. void MinHeapFixup(int a[], int i)  
  2. {  
  3.     for (int j = (i - 1) / 2; (j >= 0 && i != 0)&& a[i] <a[j]; i = j, j = (i - 1) / 2)  
  4.         Swap(a[i], a[j]);  
  5. }  

插入時:

  1. //在最小堆中加入新的數據nNum  
  2. void MinHeapAddNumber(int a[], int n, int nNum)  
  3. {  
  4.     a[n] = nNum;  
  5.     MinHeapFixup(a, n);  
  6. }  

堆的刪除

按定義,堆中每次都只能刪除第0個數據。爲了便於重建堆,實際的操作是將最後一個數據的值賦給根結點,然後再從根結點開始進行一次從上向下的調整。調整時先在左右兒子結點中找最小的,如果父結點比這個最小的子結點還小說明不需要調整了,反之將父結點和它交換後再考慮後面的結點。相當於從根結點將一個數據的“下沉”過程。下面給出代碼:

  1. //  從i節點開始調整,n爲節點總數 從0開始計算 i節點的子節點爲 2*i+1, 2*i+2  
  2. void MinHeapFixdown(int a[], int i, int n)  
  3. {  
  4.     int j, temp;  
  5.   
  6.     temp = a[i];  
  7.     j = 2 * i + 1;  
  8.     while (j < n)  
  9.     {  
  10.         if (j + 1 < n && a[j + 1] < a[j]) //在左右孩子中找最小的  
  11.             j++;  
  12.   
  13.         if (a[j] >= temp)  
  14.             break;  
  15.   
  16.         a[i] = a[j];     //把較小的子結點往上移動,替換它的父結點  
  17.         i = j;  
  18.         j = 2 * i + 1;  
  19.     }  
  20.     a[i] = temp;  
  21. }  
  22. //在最小堆中刪除數  
  23. void MinHeapDeleteNumber(int a[], int n)  
  24. {  
  25.     Swap(a[0], a[n - 1]);  
  26.     MinHeapFixdown(a, 0, n - 1);  
  27. }  

堆化數組

有了堆的插入和刪除後,再考慮下如何對一個數據進行堆化操作。要一個一個的從數組中取出數據來建立堆吧,不用!先看一個數組,如下圖:

很明顯,對葉子結點來說,可以認爲它已經是一個合法的堆了即20,60, 65, 4, 49都分別是一個合法的堆。只要從A[4]=50開始向下調整就可以了。然後再取A[3]=30,A[2] = 17,A[1] = 12,A[0] = 9分別作一次向下調整操作就可以了。下圖展示了這些步驟:

寫出堆化數組的代碼:

  1. //建立最小堆  
  2. void MakeMinHeap(int a[], int n)  
  3. {  
  4.     for (int i = n / 2 - 1; i >= 0; i--)  
  5.         MinHeapFixdown(a, i, n);  
  6. }  


至此,堆的操作就全部完成了(注1),再來看下如何用堆這種數據結構來進行排序。

堆排序

首先可以看到堆建好之後堆中第0個數據是堆中最小的數據。取出這個數據再執行下堆的刪除操作。這樣堆中第0個數據又是堆中最小的數據,重複上述步驟直至堆中只有一個數據時就直接取出這個數據。

由於堆也是用數組模擬的,故堆化數組後,第一次將A[0]與A[n - 1]交換,再對A[0…n-2]重新恢復堆。第二次將A[0]與A[n – 2]交換,再對A[0…n - 3]重新恢復堆,重複這樣的操作直到A[0]與A[1]交換。由於每次都是將最小的數據併入到後面的有序區間,故操作完成後整個數組就有序了。有點類似於直接選擇排序

  1. void MinheapsortTodescendarray(int a[], int n)  
  2. {  
  3.     for (int i = n - 1; i >= 1; i--)  
  4.     {  
  5.         Swap(a[i], a[0]);  
  6.         MinHeapFixdown(a, 0, i);  
  7.     }  
  8. }  

注意使用最小堆排序後是遞減數組,要得到遞增數組,可以使用最大堆。

由於每次重新恢復堆的時間複雜度爲O(logN),共N - 1次重新恢復堆操作,再加上前面建立堆時N / 2次向下調整,每次調整時間複雜度也爲O(logN)。二次操作時間相加還是O(N * logN)。故堆排序的時間複雜度爲O(N * logN)。STL也實現了堆的相關函數,可以參閱《STL系列之四 heap 堆》。

 

 

注1 作爲一個數據結構,最好用類將其數據和方法封裝起來,這樣即便於操作,也便於理解。此外,除了堆排序要使用堆,另外還有很多場合可以使用堆來方便和高效的處理數據,以後會一一介紹。

 

 

轉載請標明出處,原文地址:http://blog.csdn.net/morewindows/article/details/6709644

發佈了9 篇原創文章 · 獲贊 3 · 訪問量 2萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章