计算机视觉相关代码片段(Python)

计算机视觉相关代码片段(Python)

本文记载了计算机视觉相关的代码片段,是由Python实现的。


1直方图均衡化

Python计算机视觉:基本操作与直方图
图解直方图均衡化及其Python实现

# -*- coding: cp936 -*-
from PIL import Image
from numpy import *
import matplotlib.pyplot as plt

def histeq(im, nbr_bins=256):
    imhist,bins = histogram(im.flatten(), nbr_bins, normed=True)
    cdf = imhist.cumsum()
    cdf = 255*cdf/cdf[-1]
    im2 = interp(im.flatten(),bins[:-1], cdf)
    return im2.reshape(im.shape), cdf


im = array(Image.open('dog.jpg').convert('L')) #图像与源码在同一个文件夹下
plt.figure('hist', figsize=(8,8))

plt.subplot(221) 
plt.imshow(im,plt.cm.gray) #原始图像
plt.subplot(222)
plt.hist(im.flatten(), bins=256, normed=1, edgecolor='None', facecolor='red') #原始图像直方图

im2,cdf = histeq(im)
plt.subplot(223) 
plt.imshow(im2,plt.cm.gray) #均衡化图像
plt.subplot(224)
plt.hist(im2.flatten(), bins=256, normed=1, edgecolor='None', facecolor='red') #均衡化直方图

plt.show()

运行结果
直方图均衡化测试

2 主成分分析法(PCA)

机器学习中的数学(4)-线性判别分析(LDA),主成分分析(PCA)
机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用
待补充

3 Harris角点检测器

3.1 单张图片检测

Harris角点
Harris角点检测

from PIL import Image
from pylab import *
from numpy import *
from scipy.ndimage import filters

def compute_harris_response(im,sigma=3):
    """在一幅灰度图像中,对每个像素计算Harris角点检测器响应函数"""

    #计算导数
    imx = zeros(im.shape)
    filters.gaussian_filter(im, (sigma, sigma), (0,1), imx)
    imy = zeros(im.shape)
    filters.gaussian_filter(im, (sigma, sigma), (1,0), imy)

    #计算Harris矩阵的分量
    Wxx = filters.gaussian_filter(imx*imx, sigma)
    Wxy = filters.gaussian_filter(imx*imy, sigma)
    Wyy = filters.gaussian_filter(imy*imy, sigma)

    #计算特征值和迹
    Wdet = Wxx*Wyy - Wxy**2
    Wtr = Wxx + Wyy

    return Wdet / Wtr

def get_harris_points(harrisim, min_dist=10, threshold=0.1):
    """从一幅Harris响应图像中返回角点。min_dist为分割点和图像边界的最小像素数目"""

    #寻找高于阈值的候选角点
    corner_threshold = harrisim.max()*threshold
    harrisim_t = (harrisim>corner_threshold)*1

    #得到候选点的座标
    coords = array(harrisim_t.nonzero()).T

    #以及它们的Harris响应值
    candidate_values = [harrisim[c[0],c[1]] for c in coords]

    #对候选点按照Harris响应值进行排序
    index = argsort(candidate_values)

    #将可行点的位置保存到数组中
    allowed_locations = zeros(harrisim.shape)
    allowed_locations[min_dist:-min_dist, min_dist:-min_dist] = 1

    #按照min_distancce原则,选择最佳Harris点
    filtered_coords = []
    for i in index:
        if allowed_locations[coords[i,0],coords[i,1]] == 1:
            filtered_coords.append(coords[i])
            allowed_locations[(coords[i,0]-min_dist):(coords[i,0]+min_dist),(coords[i,1]-min_dist):(coords[i,1]+min_dist)]=0

    return filtered_coords

def plot_harris_points(image,filterd_coords):
    """绘制图像中检测到的角点"""
    figure()
    gray()
    imshow(image)
    plot([p[1] for p in filtered_coords], [p[0] for p in filtered_coords], "*")
    axis('off')
    show()

#读入图像
im = array(Image.open('./data/empire.jpg').convert('L'))
#检测harris角点
harrisim = compute_harris_response(im)
#harris响应函数
harrisim1 = 255-harrisim

figure()
gray()

#画出Harris响应图
subplot(141)
imshow(harrisim1)
print harrisim1.shape
axis('off')
axis('equal')

threshold = [0.01, 0.05, 0.1]
for i,thres in enumerate(threshold):
    filtered_coords = get_harris_points(harrisim, 6, thres)
    subplot(1,4,i+2)
    imshow(im)
    print im.shape
    plot([p[1] for p in filtered_coords], [p[0] for p in filtered_coords], "*")
    axis('off')

show()

运行结果
harris

3.2 两张图片匹配

from PIL import Image
from pylab import *
from numpy import *
from scipy.ndimage import filters

def imresize(im, sz):
    pil_im = Image.fromarray(uint8(im))
    return array(pil_im.resize(sz))

def compute_harris_response(im,sigma=3):
    """在一幅灰度图像中,对每个像素计算Harris角点检测器响应函数"""

    #计算导数
    imx = zeros(im.shape)
    filters.gaussian_filter(im, (sigma, sigma), (0,1), imx)
    imy = zeros(im.shape)
    filters.gaussian_filter(im, (sigma, sigma), (1,0), imy)

    #计算Harris矩阵的分量
    Wxx = filters.gaussian_filter(imx*imx, sigma)
    Wxy = filters.gaussian_filter(imx*imy, sigma)
    Wyy = filters.gaussian_filter(imy*imy, sigma)

    #计算特征值和迹
    Wdet = Wxx*Wyy - Wxy**2
    Wtr = Wxx + Wyy

    return Wdet / Wtr

def get_harris_points(harrisim, min_dist=10, threshold=0.1):
    """从一幅Harris响应图像中返回角点。min_dist为分割点和图像边界的最小像素数目"""

    #寻找高于阈值的候选角点
    corner_threshold = harrisim.max()*threshold
    harrisim_t = (harrisim>corner_threshold)*1

    #得到候选点的座标
    coords = array(harrisim_t.nonzero()).T

    #以及它们的Harris响应值
    candidate_values = [harrisim[c[0],c[1]] for c in coords]

    #对候选点按照Harris响应值进行排序
    index = argsort(candidate_values)

    #将可行点的位置保存到数组中
    allowed_locations = zeros(harrisim.shape)
    allowed_locations[min_dist:-min_dist, min_dist:-min_dist] = 1

    #按照min_distancce原则,选择最佳Harris点
    filtered_coords = []
    for i in index:
        if allowed_locations[coords[i,0],coords[i,1]] == 1:
            filtered_coords.append(coords[i])
            allowed_locations[(coords[i,0]-min_dist):(coords[i,0]+min_dist),(coords[i,1]-min_dist):(coords[i,1]+min_dist)]=0

    return filtered_coords

def get_descriptors(image, filtered_coords, wid=5):
    """对于每个返回的点,返回点周围2*wid+1个像素的值(假设选取的点min_distance>wid)"""
    desc = []
    for coords in filtered_coords:
        patch = image[coords[0]-wid:coords[0]+wid+1,
                      coords[1]-wid:coords[1]+wid+1].flatten()
        desc.append(patch)

    return desc

def match(desc1, desc2, threshold=0.5):
    """对于第一幅图像中的每个角点描述子,使用归一化互相关,选取它在第二幅图像中的匹配角点"""
    n = len(desc1[0])
    #点对的距离
    d = -ones((len(desc1),len(desc2)))
    for i in range(len(desc1)):
        for j in range(len(desc2)):
            d1 = (desc1[i]-mean(desc1[i])) / std(desc1[i])
            d2 = (desc2[j]-mean(desc2[j])) / std(desc2[j])
            ncc_value = sum(d1*d2)/(n-1)
            if ncc_value > threshold:
                d[i,j] = ncc_value
    ndx = argsort(-d)
    matchscores = ndx[:,0]

    return matchscores

def match_twosided(desc1, desc2, threshold=0.5):
    """两边对称版本的match()"""

    matches_12 = match(desc1, desc2, threshold)
    matches_21 = match(desc2, desc1, threshold)

    ndx_12 = where(matches_12>=0)[0]

    #去除非对称的匹配
    for n in ndx_12:
        if matches_21[matches_12[n]] != n:
            matches_12[n] = -1

    return matches_12

def appendimages(im1, im2):
    """返回将两幅图像并排拼接成的一幅新图像"""
    #选取具有最少行数的图像,然后填充足够的空行
    rows1 = im1.shape[0]
    rows2 = im2.shape[0]

    if rows1 < rows2:
        im1 = concatenate((im1, zeros((rows2-rows1,im1.shape[1]))),axis=0)
    elif rows1 >rows2:
        im2 = concatenate((im2, zeros((rows1-rows2,im2.shape[1]))),axis=0)
    return concatenate((im1,im2), axis=1)

def plot_matches(im1,im2,locs1,locs2,matchscores,show_below=True):
    """ 显示一幅带有连接匹配之间连线的图片
        输入:im1, im2(数组图像), locs1,locs2(特征位置),matchscores(match()的输出),
        show_below(如果图像应该显示在匹配的下方)
    """
    im3=appendimages(im1,im2)
    if show_below:
        im3=vstack((im3,im3))
    imshow(im3)

    cols1 = im1.shape[1]
    for i,m in enumerate(matchscores):
        if m>0:
            plot([locs1[i][1],locs2[m][1]+cols1],[locs1[i][0],locs2[m][0]],'c')
    axis('off')

im1 = array(Image.open('./data/sf_view1.jpg').convert("L"))
im2 = array(Image.open('./data/sf_view2.jpg').convert("L"))

im1 = imresize(im1, (im1.shape[1]/2, im1.shape[0]/2))
im2 = imresize(im2, (im2.shape[1]/2, im2.shape[0]/2))

wid=5
harrisim = compute_harris_response(im1,5)
filtered_coords1 = get_harris_points(harrisim, wid+1)
d1 = get_descriptors(im1, filtered_coords1, wid)

harrisim = compute_harris_response(im2,5)
filtered_coords2 = get_harris_points(harrisim, wid+1)
d2 = get_descriptors(im2, filtered_coords2, wid)

print 'start matching'
matches = match_twosided(d1,d2)
#print matches

figure()
gray()
plot_matches(im1, im2, filtered_coords1, filtered_coords2, matches)
show()

运行结果
这里写图片描述

发布了162 篇原创文章 · 获赞 101 · 访问量 127万+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章