優化方法-爬山法

爬山法是一種局部最優的算法(本質上屬於貪心法),也屬於啓發式的方法,它一般只能得到局部最優解。當優化的問題的局部最優解即爲全局最優解時可以用此方法來求最優問題,否則可以考慮多次爬山法或者其他的方法如遺傳算法和模擬退火法。

一、原理

爬山法一般從一個隨機的解開始,然後逐步找到一個最優解(局部最優)。 假定所求問題有多個參數,我們在通過爬山法逐步獲得最優解的過程中可以依次分別將某個參數的值增加或者減少一個單位。例如某個問題的解需要使用3個整數類型的參數x1、x2、x3,開始時將這三個參數設值爲(2,2,-2),將x1增加/減少1,得到兩個解(1,2,-2), (3, 2,-2);將x2增加/減少1,得到兩個解(2,3, -2),(2,1, -2);將x3增加/減少1,得到兩個解(2,2,-1),(2,2,-3),這樣就得到了一個解集:(2,2,-2), (1, 2,-2), (3, 2,-2), (2,3,-2), (2,1,-2), (2,2,-1), (2,2,-3)
從上面的解集中找到最優解,然後將這個最優解依據上面的方法再構造一個解集,再求最優解,就這樣,直到前一次的最優解和後一次的最優解相同才結束“爬山”。

二、代碼

import random  
 def evaluate(x1, x2, x3):
    return x1+x2-x3 
 if __name__ == '__main__':
    x_range = [ [-2, 5], [2, 6], [-5, 2] ]
    best_sol = [random.randint(x_range[0][0], x_range[0][1]), 
           random.randint(x_range[1][0], x_range[1][1]), 
           random.randint(x_range[2][0], x_range[2][1])] 
     while True:
        best_evaluate = evaluate(best_sol[0], best_sol[1], best_sol[2])
        current_best_value = best_evaluate
        sols = [best_sol] 
         for i in xrange(len(best_sol)):
            if best_sol[i] > x_range[i][0]:
                sols.append(best_sol[0:i] + [best_sol[i]-1] + best_sol[i+1:])
            if best_sol[i] < x_range[i][1]:
                sols.append(best_sol[0:i] + [best_sol[i]+1] + best_sol[i+1:])
        print sols
        for s in sols:
            el = evaluate(s[0], s[1], s[2])
            if el < best_evaluate:
                best_sol = s
                best_evaluate = el
        if best_evaluate == current_best_value:
            break 
     print 'best sol:', current_best_value, best_sol
某次運行結果如下: 
 [[0, 5, 1], [-1, 5, 1], [1, 5, 1], [0, 4, 1], [0, 6, 1], [0, 5, 0], [0, 5, 2]]
[[-1, 5, 1], [-2, 5, 1], [0, 5, 1], [-1, 4, 1], [-1, 6, 1], [-1, 5, 0], [-1, 5, 2]]
[[-2, 5, 1], [-1, 5, 1], [-2, 4, 1], [-2, 6, 1], [-2, 5, 0], [-2, 5, 2]]
[[-2, 4, 1], [-1, 4, 1], [-2, 3, 1], [-2, 5, 1], [-2, 4, 0], [-2, 4, 2]]
[[-2, 3, 1], [-1, 3, 1], [-2, 2, 1], [-2, 4, 1], [-2, 3, 0], [-2, 3, 2]]
[[-2, 2, 1], [-1, 2, 1], [-2, 3, 1], [-2, 2, 0], [-2, 2, 2]]
[[-2, 2, 2], [-1, 2, 2], [-2, 3, 2], [-2, 2, 1]]
best sol: -2 [-2, 2, 2] 
可以看到,最優解是-2,對應的x1、x2、x3分別取值-2、2、2。

三、如何找到全局最優

爬山法獲取的最優解的可能是局部最優,如果要獲得更好的解,多次使用爬山算法(需要從不同的初始解開始爬山),從多個局部最優解中找出最優解,而這個最優解也有可能是全局最優解。

另外,模擬退火算法也是一個試圖找到全局最優解的算法


轉自:http://www.jb51.net/article/49390.htm

發佈了21 篇原創文章 · 獲贊 14 · 訪問量 9萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章