C++常用排序算法研究

首先介紹一個計算時間差的函數,它在<time.h>頭文件中定義,於是我們只需這樣定義2個變量,再相減就可以計算時間差了。
函數開頭加上
clock_t start = clock();

函數結尾加上
clock_t end = clock();

於是時間差爲: end - start
不過這不精確的 多次運行時間是不同的 和CPU 進程有關吧

(先總結一下:以下算法以時間和空間以及編碼難度,以及實用性方面來看,快速排序法是最優秀的!推薦!~
但是希爾排序又是最經典的一個,所以建議優先看這2個排序算法)
排序算法是一種基本並且常用的算法。由於實際工作中處理的數量巨大,所以排序算法
對算法本身的速度要求很高。
而一般我們所謂的算法的性能主要是指算法的複雜度,一般用O方法來表示。在後面我將
給出詳細的說明。
對於排序的算法我想先做一點簡單的介紹,也是給這篇文章理一個提綱。
我將按照算法的複雜度,從簡單到難來分析算法。
第一部分是簡單排序算法,後面你將看到他們的共同點是算法複雜度爲O(N*N)(因爲沒有
使用word,所以無法打出上標和下標)。
第二部分是高級排序算法,複雜度爲O(Log2(N))。這裏我們只介紹一種算法。另外還有幾種
算法因爲涉及樹與堆的概念,所以這裏不於討論。
第三部分類似動腦筋。這裏的兩種算法並不是最好的(甚至有最慢的),但是算法本身比較
奇特,值得參考(編程的角度)。同時也可以讓我們從另外的角度來認識這個問題。
第四部分是我送給大家的一個餐後的甜點——一個基於模板的通用快速排序。由於是模板函數
可以對任何數據類型排序(抱歉,裏面使用了一些論壇專家的呢稱)。

現在,讓我們開始吧:

一、簡單排序算法
由於程序比較簡單,所以沒有加什麼註釋。所有的程序都給出了完整的運行代碼,並在我的VC環境
下運行通過。因爲沒有涉及MFC和WINDOWS的內容,所以在BORLAND C++的平臺上應該也不會有什麼
問題的。在代碼的後面給出了運行過程示意,希望對理解有幫助。
1.冒泡法:
這是最原始,也是衆所周知的最慢的算法了。他的名字的由來因爲它的工作看來象是冒泡:
#include <iostream.h>
void BubbleSort(int* pData,int Count)
{
int iTemp;
for(int i=1;i<Count;i++)
{
for(int j=Count-1;j>=i;j--)
{
if(pData[j]<pData[j-1])
{
iTemp = pData[j-1];
pData[j-1] = pData[j];
pData[j] = iTemp;
}
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
BubbleSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"/n";
}
倒序(最糟情況)
第一輪:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交換3次)
第二輪:7,10,9,8->7,10,8,9->7,8,10,9(交換2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:6次
其他:
第一輪:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交換2次)
第二輪:7,8,10,9->7,8,10,9->7,8,10,9(交換0次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:3次
上面我們給出了程序段,現在我們分析它:這裏,影響我們算法性能的主要部分是循環和交換,
顯然,次數越多,性能就越差。從上面的程序我們可以看出循環的次數是固定的,爲1+2+...+n-1。
寫成公式就是1/2*(n-1)*n。
現在注意,我們給出O方法的定義:
若存在一常量K和起點n0,使當n>=n0時,有f(n)<=K*g(n),則f(n) = O(g(n))。(呵呵,不要說沒
學好數學呀,對於編程數學是非常重要的!!!)
現在我們來看1/2*(n-1)*n,當K=1/2,n0=1,g(n)=n*n時,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n)
=O(g(n))=O(n*n)。所以我們程序循環的複雜度爲O(n*n)。
再看交換。從程序後面所跟的表可以看到,兩種情況的循環相同,交換不同。其實交換本身同數據源的
有序程度有極大的關係,當數據處於倒序的情況時,交換次數同循環一樣(每次循環判斷都會交換),
複雜度爲O(n*n)。當數據爲正序,將不會有交換。複雜度爲O(0)。亂序時處於中間狀態。正是由於這樣的
原因,我們通常都是通過循環次數來對比算法。

2.交換法:
交換法的程序最清晰簡單,每次用當前的元素一一的同其後的元素比較並交換。
#include <iostream.h>
void ExchangeSort(int* pData,int Count)
{
int iTemp;
for(int i=0;i<Count-1;i++)
{
for(int j=i+1;j<Count;j++)
{
if(pData[j]<pData[i])
{
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
}
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
ExchangeSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"/n";
}
倒序(最糟情況)
第一輪:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交換3次)
第二輪:7,10,9,8->7,9,10,8->7,8,10,9(交換2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:6次
其他:
第一輪:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交換1次)
第二輪:7,10,8,9->7,8,10,9->7,8,10,9(交換1次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:3次
從運行的表格來看,交換幾乎和冒泡一樣糟。事實確實如此。循環次數和冒泡一樣
也是1/2*(n-1)*n,所以算法的複雜度仍然是O(n*n)。由於我們無法給出所有的情況,所以
只能直接告訴大家他們在交換上面也是一樣的糟糕(在某些情況下稍好,在某些情況下稍差)。
3.選擇法:
現在我們終於可以看到一點希望:選擇法,這種方法提高了一點性能(某些情況下)
這種方法類似我們人爲的排序習慣:從數據中選擇最小的同第一個值交換,在從省下的部分中
選擇最小的與第二個交換,這樣往復下去。
#include <iostream.h>
void SelectSort(int* pData,int Count)
{
int iTemp; //一個存儲值。
int iPos; //一個存儲下標。
for(int i=0;i<Count-1;i++)
{
iTemp = pData[i];
iPos = i;
for(int j=i+1;j<Count;j++)
{
if(pData[j]<iTemp) //選擇排序法就是用第一個元素與最小的元素交換。
{
iTemp = pData[j];
iPos = j; //下標的交換賦值。
}
}
pData[iPos] = pData[i];
pData[i] = iTemp;
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
SelectSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"/n";
}
倒序(最糟情況)
第一輪:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交換1次)
第二輪:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交換1次)
第一輪:7,8,9,10->(iTemp=9)7,8,9,10(交換0次)
循環次數:6次
交換次數:2次
其他:
第一輪:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交換1次)
第二輪:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交換1次)
第一輪:7,8,10,9->(iTemp=9)7,8,9,10(交換1次)
循環次數:6次
交換次數:3次
遺憾的是算法需要的循環次數依然是1/2*(n-1)*n。所以算法複雜度爲O(n*n)。
我們來看他的交換。由於每次外層循環只產生一次交換(只有一個最小值)。所以f(n)<=n
所以我們有f(n)=O(n)。所以,在數據較亂的時候,可以減少一定的交換次數。

4.插入法:
插入法較爲複雜,它的基本工作原理是抽出牌,在前面的牌中尋找相應的位置插入,然後繼續下一張
#include <iostream.h>
void InsertSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=1;i<Count;i++)
{
iTemp = pData[i];
iPos = i-1;
while((iPos>=0) && (iTemp<pData[iPos]))
{
pData[iPos+1] = pData[iPos];
iPos--;
}
pData[iPos+1] = iTemp;
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
InsertSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"/n";
}
倒序(最糟情況)
第一輪:10,9,8,7->9,10,8,7(交換1次)(循環1次)
第二輪:9,10,8,7->8,9,10,7(交換1次)(循環2次)
第一輪:8,9,10,7->7,8,9,10(交換1次)(循環3次)
循環次數:6次
交換次數:3次
其他:
第一輪:8,10,7,9->8,10,7,9(交換0次)(循環1次)
第二輪:8,10,7,9->7,8,10,9(交換1次)(循環2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)(循環1次)
循環次數:4次
交換次數:2次
上面結尾的行爲分析事實上造成了一種假象,讓我們認爲這種算法是簡單算法中最好的,其實不是,
因爲其循環次數雖然並不固定,我們仍可以使用O方法。從上面的結果可以看出,循環的次數f(n)<=
1/2*n*(n-1)<=1/2*n*n。所以其複雜度仍爲O(n*n)(這裏說明一下,其實如果不是爲了展示這些簡單
排序的不同,交換次數仍然可以這樣推導)。現在看交換,從外觀上看,交換次數是O(n)(推導類似
選擇法),但我們每次要進行與內層循環相同次數的‘=’操作。正常的一次交換我們需要三次‘=’
而這裏顯然多了一些,所以我們浪費了時間。
最終,我個人認爲,在簡單排序算法中,選擇法是最好的。

二、高級排序算法:
高級排序算法中我們將只介紹這一種,同時也是目前我所知道(我看過的資料中)的最快的。
它的工作看起來仍然象一個二叉樹。首先我們選擇一箇中間值middle程序中我們使用數組中間值,然後
把比它小的放在左邊,大的放在右邊(具體的實現是從兩邊找,找到一對後交換)。然後對兩邊分別使
用這個過程(最容易的方法——遞歸)。
1.快速排序:
#include <iostream.h>
void run(int* pData,int left,int right)
{
int i,j;
int middle,iTemp;
i = left;
j = right;
middle = pData[(left+right)/2]; //求中間值
do{
while((pData[i]<middle) && (i<right))//從左掃描大於中值的數
i++;
while((pData[j]>middle) && (j>left))//從右掃描大於中值的數
j--;
if(i<=j)//找到了一對值
{
//交換
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
i++;
j--;
}
}while(i<=j);//如果兩邊掃描的下標交錯,就停止(完成一次)
//當左邊部分有值(left<j),遞歸左半邊
if(left<j)
run(pData,left,j);
//當右邊部分有值(right>i),遞歸右半邊
if(right>i)
run(pData,i,right);
}
void QuickSort(int* pData,int Count)
{
run(pData,0,Count-1);
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
QuickSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"/n";
}
這裏我沒有給出行爲的分析,因爲這個很簡單,我們直接來分析算法:首先我們考慮最理想的情況
1.數組的大小是2的冪,這樣分下去始終可以被2整除。假設爲2的k次方,即k=log2(n)。
2.每次我們選擇的值剛好是中間值,這樣,數組纔可以被等分。
第一層遞歸,循環n次,第二層循環2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
所以算法複雜度爲O(log2(n)*n)
其他的情況只會比這種情況差,最差的情況是每次選擇到的middle都是最小值或最大值,那麼他將變
成交換法(由於使用了遞歸,情況更糟),但是糟糕的情況只會持續一個流程,到下一個流程的時候就很可能已經避開了該中間的最大和最小值,因爲數組下標變化了,於是中間值不在是那個最大或者最小值。但是你認爲這種情況發生的機率有多大??呵呵,你完全不必擔心這個問題。實踐證明,大多數的情況,快速排序總是最好的。
如果你擔心這個問題,你可以使用堆排序,這是一種穩定的O(log2(n)*n)算法,但是通常情況下速度要慢
於快速排序(因爲要重組堆)。
三、其他排序
1.雙向冒泡:
通常的冒泡是單向的,而這裏是雙向的,也就是說還要進行反向的工作。
代碼看起來複雜,仔細理一下就明白了,是一個來回震盪的方式。
寫這段代碼的作者認爲這樣可以在冒泡的基礎上減少一些交換(我不這麼認爲,也許我錯了)。
反正我認爲這是一段有趣的代碼,值得一看。
#include <iostream.h>
void Bubble2Sort(int* pData,int Count)
{
int iTemp;
int left = 1;
int right =Count -1;
int t;
do
{
//正向的部分
for(int i=right;i>=left;i--)
{
if(pData[i]<pData[i-1])
{
iTemp = pData[i];
pData[i] = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
left = t+1;
//反向的部分
for(i=left;i<right+1;i++)
{
if(pData[i]<pData[i-1])
{
iTemp = pData[i];
pData[i] = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
right = t-1;
}while(left<=right);
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
Bubble2Sort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"/n";
}

2.SHELL排序
這個排序非常複雜,看了程序就知道了。
首先需要一個遞減的步長,這裏我們使用的是9、5、3、1(最後的步長必須是1)。
工作原理是首先對相隔9-1個元素的所有內容排序,然後再使用同樣的方法對相隔5-1個元素的排序
以次類推。
基本思想:
先取一個小於n的整數d1作爲第一個增量,把文件的全部記錄分成d1個組。所有距離爲dl的倍數的記錄放在同一個組中(所以d值越小,分組越少,每組的元素越多)。先在各組內進行直接插人排序;然後,取第二個增量d2<d1重複上述的分組和排序,直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有記錄放在同一組中進行直接插入排序爲止。
該方法實質上是一種分組插入方法。
(備註:增量中最好有基數也有偶數,所以可以人爲設置)
#include <iostream.h>
int ShellPass(int * array,int d) //一趟增量爲d的希爾插入排序
{
int temp;
int k=0;
for(int i=d+1;i<13;i++)
{
if(array[i]<array[i-d])
{
temp=array[i];
int j=i-d;
do
{
array[j+d]=array[j];
j=j-d;
k++;
}while(j>0 && temp<array[j]);
array[j+d]=temp;
}
k++;
}
return k;
}
void ShellSort(int * array) //希爾排序
{
int count=0;
int ShellCount=0;
int d=12; //一般增量設置爲數組元素個數,不斷除以2以取小
do
{
d=d/2;
ShellCount=ShellPass(array,d);
count+=ShellCount;
}while(d>1);
cout<<"希爾排序中,關鍵字移動次數爲:"<<count<<endl;
}
void main()
{
int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1};
ShellSort(data);
for (int i=0;i<12;i++)
cout<<data[i]<<" ";
cout<<"/n";
}
算法分析
1.增量序列的選擇
Shell排序的執行時間依賴於增量序列。
好的增量序列的共同特徵:
① 最後一個增量必須爲1;
② 應該儘量避免序列中的值(尤其是相鄰的值)互爲倍數的情況。
有人通過大量的實驗,給出了目前較好的結果:當n較大時,比較和移動的次數約在nl.25到1.6n1.25之間。
2.Shell排序的時間性能優於直接插入排序
希爾排序的時間性能優於直接插入排序的原因:
①當文件初態基本有序時直接插入排序所需的比較和移動次數均較少。
②當n值較小時,n和n2的差別也較小,即直接插入排序的最好時間複雜度O(n)和最壞時間複雜度0(n2)差別不大。
③在希爾排序開始時增量較大,分組較多,每組的記錄數目少,故各組內直接插入較快,後來增量di逐漸縮小,分組數逐漸減少,而各組的記錄數目逐漸增多,但由於已經按di-1作爲距離排過序,使文件較接近於有序狀態,所以新的一趟排序過程也較快。
因此,希爾排序在效率上較直接插人排序有較大的改進。
3.穩定性
希爾排序是不穩定的。

四、基於模板的通用排序:
這個程序我想就沒有分析的必要了,大家看一下就可以了。不明白可以在論壇上問。
MyData.h文件
///////////////////////////////////////////////////////
class CMyData
{
public:
CMyData(int Index,char* strData);
CMyData();
virtual ~CMyData();
int m_iIndex;
int GetDataSize(){ return m_iDataSize; };
const char* GetData(){ return m_strDatamember; };
//這裏重載了操作符:
CMyData& operator =(CMyData &SrcData);
bool operator <(CMyData& data );
bool operator >(CMyData& data );
private:
char* m_strDatamember;
int m_iDataSize;
};
////////////////////////////////////////////////////////
MyData.cpp文件
////////////////////////////////////////////////////////
CMyData::CMyData():
m_iIndex(0),
m_iDataSize(0),
m_strDatamember(NULL)
{
}
CMyData::~CMyData()
{
if(m_strDatamember != NULL)
delete[] m_strDatamember;
m_strDatamember = NULL;
}
CMyData::CMyData(int Index,char* strData):
m_iIndex(Index),
m_iDataSize(0),
m_strDatamember(NULL)
{
m_iDataSize = strlen(strData);
m_strDatamember = new char[m_iDataSize+1];
strcpy(m_strDatamember,strData);
}
CMyData& CMyData::operator =(CMyData &SrcData)
{
m_iIndex = SrcData.m_iIndex;
m_iDataSize = SrcData.GetDataSize();
m_strDatamember = new char[m_iDataSize+1];
strcpy(m_strDatamember,SrcData.GetData());
return *this;
}
bool CMyData::operator <(CMyData& data )
{
return m_iIndex<data.m_iIndex;
}
bool CMyData::operator >(CMyData& data )
{
return m_iIndex>data.m_iIndex;
}
///////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////
//主程序部分
#include <iostream.h>
#include "MyData.h"
template <class T>
void run(T* pData,int left,int right)
{
int i,j;
T middle,iTemp;
i = left;
j = right;
//下面的比較都調用我們重載的操作符函數
middle = pData[(left+right)/2]; //求中間值
do{
while((pData[i]<middle) && (i<right))//從左掃描大於中值的數
i++;
while((pData[j]>middle) && (j>left))//從右掃描大於中值的數
j--;
if(i<=j)//找到了一對值
{
//交換
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
i++;
j--;
}
}while(i<=j);//如果兩邊掃描的下標交錯,就停止(完成一次)
//當左邊部分有值(left<j),遞歸左半邊
if(left<j)
run(pData,left,j);
//當右邊部分有值(right>i),遞歸右半邊
if(right>i)
run(pData,i,right);
}
template <class T>
void QuickSort(T* pData,int Count)
{
run(pData,0,Count-1);
}
void main()
{
CMyData data[] = {
CMyData(8,"xulion"),
CMyData(7,"sanzoo"),
CMyData(6,"wangjun"),
CMyData(5,"VCKBASE"),
CMyData(4,"jacky2000"),
CMyData(3,"cwally"),
CMyData(2,"VCUSER"),
CMyData(1,"isdong")
};
QuickSort(data,8);
for (int i=0;i<8;i++)
cout<<data[i].m_iIndex<<" "<<data[i].GetData()<<"/n";
cout<<"/n";
發佈了95 篇原創文章 · 獲贊 20 · 訪問量 15萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章