hashMap-putVal()方法分析

putVal() 方法解析

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        // 如果存儲元素的table爲空,則進行必要字段的初始化
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;    // 獲取長度(16)
        // 如果根據hash值獲取的結點爲空,則新建一個結點
        if ((p = tab[i = (n - 1) & hash]) == null)      // 此處 & 代替了 % (除法散列法進行散列)
            tab[i] = newNode(hash, key, value, null);
        // 這裏的p結點是根據hash值算出來對應在數組中的元素
        else {
            Node<K,V> e; K k;
            // 如果新插入的結點和table中p結點的hash值,key值相同的話
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            // 如果是紅黑樹結點的話,進行紅黑樹插入
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    // 代表這個單鏈表只有一個頭部結點,則直接新建一個結點即可
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        // 鏈表長度大於8時,將鏈表轉紅黑樹
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    // 及時更新p
                    p = e;
                }
            }
            // 如果存在這個映射就覆蓋
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                // 判斷是否允許覆蓋,並且value是否爲空
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);     // 回調以允許LinkedHashMap後置操作
                return oldValue;
            }
        }
        ++modCount;     // 更改操作次數
        if (++size > threshold)     // 大於臨界值
            // 將數組大小設置爲原來的2倍,並將原先的數組中的元素放到新數組中
            // 因爲有鏈表,紅黑樹之類,因此還要調整他們
            resize();  
        // 回調以允許LinkedHashMap後置操作
        afterNodeInsertion(evict);
        return null;
    }


resize()解析:

//初始化或者擴容之後元素調整
final Node<K,V>[] resize() {
        // 獲取舊元素數組的各種信息
        Node<K,V>[] oldTab = table;
        // 長度     
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        // 擴容的臨界值
        int oldThr = threshold;
        // 定義新數組的長度及擴容的臨界值
        int newCap, newThr = 0;
        if (oldCap > 0) {   // 如果原table不爲空
            // 如果數組長度達到最大值,則修改臨界值爲Integer.MAX_VALUE
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // 下面就是擴容操作(2倍)
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                // threshold也變爲二倍
                newThr = oldThr << 1;
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // threshold爲0,則使用默認值
            newCap = DEFAULT_INITIAL_CAPACITY;  
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {  // 如果臨界值還爲0,則設置臨界值
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr; // 更新填充因子
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {   // 調整數組大小之後,需要調整紅黑樹或者鏈表的指向
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)     // 紅黑樹調整
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        // 鏈表調整
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }


putTreeVal()解析:

// 紅黑樹插入
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                       int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
            TreeNode<K,V> root = (parent != null) ? root() : this;      // 找Root
            for (TreeNode<K,V> p = root;;) {
                int dir, ph; K pk;
                if ((ph = p.hash) > h)      // 紅黑樹中根據hash值、key值找結點
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))      // 找到則返回此節點
                    return p;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        TreeNode<K,V> q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                             (q = ch.find(h, k, kc)) != null) ||
                            ((ch = p.right) != null &&
                             (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }
                TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {      // 沒找到時
                    Node<K,V> xpn = xp.next;
                    TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);    // 創建一個結點
                    if (dir <= 0)                                       // 比較
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;                                        // 插入
                    x.parent = x.prev = xp;     
                    if (xpn != null)
                        ((TreeNode<K,V>)xpn).prev = x;
                    moveRootToFront(tab, balanceInsertion(root, x));    // 調整
                    return null;
                }
            }
        }

treeifyBin()解析

// 鏈表轉雙向鏈表操作
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;  
        // 如果元素總個數小於64,則繼續進行擴容,結點指向調節
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        // 先找到那個鏈表的頭
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
                //創建紅黑樹根結點
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                // 此處纔是真正的轉爲紅黑樹
                hd.treeify(tab);
        }
    }

treeify()解析

//將鏈表中每個值進行紅黑樹插入操作
        final void treeify(Node<K,V>[] tab) {
            TreeNode<K,V> root = null;
            // TreeNode<K,V> x = this  相當於初始化了一個結點
            for (TreeNode<K,V> x = this, next; x != null; x = next) {
                next = (TreeNode<K,V>)x.next;
                // 初始化Root
                x.left = x.right = null;
                if (root == null) {
                    x.parent = null;
                    x.red = false;
                    root = x;
                }
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for (TreeNode<K,V> p = root;;) {
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        else if ((kc == null &&
                            // comparableClassFor(k) 返回 k 類型的比較器
                                  (kc = comparableClassFor(k)) == null) ||
                            // compareComparables(kc, k, pk) 返回p,pk比較的結果
                                 (dir = compareComparables(kc, k, pk)) == 0)
                            // tieBreakOrder(k, pk) 比較兩個hash碼
                            dir = tieBreakOrder(k, pk);
                        // 此處進行紅黑樹操作
                        TreeNode<K,V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            // 平衡調節
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            // 確保給定的根是根結點
            moveRootToFront(tab, root);
        }


balanceInsertion()解析

// 插入後的平衡操作
        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
                                                    TreeNode<K,V> x) {
            x.red = true;
            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
                // 沒有結點時
                if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                // 只有兩層的樹
                else if (!xp.red || (xpp = xp.parent) == null)
                    return root;
                // 左子樹插入
                if (xp == (xppl = xpp.left)) {
                    if ((xppr = xpp.right) != null && xppr.red) {
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.right) {
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                }
                // 右子樹插入
                else {
                    // 祖父結點不爲空,並且顏色爲紅色時
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        // 左子樹插入
                        if (x == xp.left) {
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            // x 的父親結點設置成黑色
                            xp.red = false;
                            if (xpp != null) {
                                // x的祖父結點設置成紅色
                                xpp.red = true;
                                // 左旋
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }


rotateLeft()解析
配圖:


// 紅黑樹的左旋操作
       

 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
                                              TreeNode<K,V> p) {
            // r(right)   指的是調整點的右子樹根結點
            // pp(parentparent)  是p的祖父結點
            // rl(rigthleft)  是p的叔父結點
            TreeNode<K,V> r, pp, rl;        
            if (p != null && (r = p.right) != null) {
                if ((rl = p.right = r.left) != null)
                    rl.parent = p;
                if ((pp = r.parent = p.parent) == null)
                    (root = r).red = false;
                else if (pp.left == p)
                    pp.left = r;
                else
                    pp.right = r;
                r.left = p;
                p.parent = r;
            }
            return root;
        }

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章