動態規劃入門詳解

  動態規劃相信大家都知道,動態規劃算法也是新手在剛接觸算法設計時很苦惱的問題,有時候覺得難以理解,但是真正理解之後,就會覺得動態規劃其實並沒有想象中那麼難。網上也有很多關於講解動態規劃的文章,大多都是敘述概念,講解原理,讓人覺得晦澀難懂,即使一時間看懂了,發現當自己做題的時候又會覺得無所適從。我覺得,理解算法最重要的還是在於練習,只有通過自己練習,纔可以更快地提升。話不多說,接下來,下面我就通過一個例子來一步一步講解動態規劃是怎樣使用的,只有知道怎樣使用,才能更好地理解,而不是一味地對概念和原理進行反覆琢磨。

    首先,我們看一下這道題(此題目來源於北大POJ):

    數字三角形(POJ1163)

    

    在上面的數字三角形中尋找一條從頂部到底邊的路徑,使得路徑上所經過的數字之和最大。路徑上的每一步都只能往左下或 右下走。只需要求出這個最大和即可,不必給出具體路徑。 三角形的行數大於1小於等於100,數字爲 0 - 99

    輸入格式:

    5      //表示三角形的行數    接下來輸入三角形

    7

    3   8

    8   1   0

    2   7   4   4

    4   5   2   6   5

    要求輸出最大和

    接下來,我們來分析一下解題思路:

    首先,肯定得用二維數組來存放數字三角形

    然後我們用D( r, j) 來表示第r行第 j 個數字(r,j從1開始算)

    我們用MaxSum(r, j)表示從D(r,j)到底邊的各條路徑中,最佳路徑的數字之和。

    因此,此題的最終問題就變成了求 MaxSum(1,1)

    當我們看到這個題目的時候,首先想到的就是可以用簡單的遞歸來解題:

    D(r, j)出發,下一步只能走D(r+1,j)或者D(r+1, j+1)。故對於N行的三角形,我們可以寫出如下的遞歸式:   

  1. if ( r == N)                  
  2.     MaxSum(r,j) = D(r,j)    
  3. else        
  4.     MaxSum( r, j) = Max{ MaxSum(r+1,j), MaxSum(r+1,j+1) } + D(r,j)   

    根據上面這個簡單的遞歸式,我們就可以很輕鬆地寫出完整的遞歸代碼: 

  1. #include <iostream>    
  2. #include <algorithm>   
  3. #define MAX 101    
  4. using namespace std;   
  5. int D[MAX][MAX];    
  6. int n;    
  7. int MaxSum(int i, int j){      
  8.     if(i==n)    
  9.         return D[i][j];      
  10.     int x = MaxSum(i+1,j);      
  11.     int y = MaxSum(i+1,j+1);      
  12.     return max(x,y)+D[i][j];    
  13. }  
  14. int main(){      
  15.     int i,j;      
  16.     cin >> n;      
  17.     for(i=1;i<=n;i++)     
  18.         for(j=1;j<=i;j++)          
  19.             cin >> D[i][j];      
  20.     cout << MaxSum(1,1) << endl;    
  21. }        

    對於如上這段遞歸的代碼,當我提交到POJ時,會顯示如下結果:

    

    對的,代碼運行超時了,爲什麼會超時呢?

    答案很簡單,因爲我們重複計算了,當我們在進行遞歸時,計算機幫我們計算的過程如下圖:

    

    就拿第三行數字1來說,當我們計算從第2行的數字3開始的MaxSum時會計算出從1開始的MaxSum,當我們計算從第二行的數字8開始的MaxSum的時候又會計算一次從1開始的MaxSum,也就是說有重複計算。這樣就浪費了大量的時間。也就是說如果採用遞規的方法,深度遍歷每條路徑,存在大量重複計算。則時間複雜度爲 2的n次方,對於 n = 100 行,肯定超時。 

    接下來,我們就要考慮如何進行改進,我們自然而然就可以想到如果每算出一個MaxSum(r,j)就保存起來,下次用到其值的時候直接取用,則可免去重複計算。那麼可以用n方的時間複雜度完成計算。因爲三角形的數字總數是 n(n+1)/2

    根據這個思路,我們就可以將上面的代碼進行改進,使之成爲記憶遞歸型的動態規劃程序: 

  1. #include <iostream>    
  2. #include <algorithm>   
  3. using namespace std;  
  4.    
  5. #define MAX 101  
  6.     
  7. int D[MAX][MAX];      
  8. int n;    
  9. int maxSum[MAX][MAX];  
  10.    
  11. int MaxSum(int i, int j){        
  12.     if( maxSum[i][j] != -1 )           
  13.         return maxSum[i][j];        
  14.     if(i==n)     
  15.         maxSum[i][j] = D[i][j];       
  16.     else{      
  17.         int x = MaxSum(i+1,j);         
  18.         int y = MaxSum(i+1,j+1);         
  19.         maxSum[i][j] = max(x,y)+ D[i][j];       
  20.     }       
  21.     return maxSum[i][j];   
  22. }   
  23. int main(){      
  24.     int i,j;      
  25.     cin >> n;      
  26.     for(i=1;i<=n;i++)     
  27.         for(j=1;j<=i;j++) {         
  28.             cin >> D[i][j];         
  29.             maxSum[i][j] = -1;     
  30.         }      
  31.     cout << MaxSum(1,1) << endl;   
  32. }   

    當我們提交如上代碼時,結果就是一次AC

    

    雖然在短時間內就AC了。但是,我們並不能滿足於這樣的代碼,因爲遞歸總是需要使用大量堆棧上的空間,很容易造成棧溢出,我們現在就要考慮如何把遞歸轉換爲遞推,讓我們一步一步來完成這個過程。

    我們首先需要計算的是最後一行,因此可以把最後一行直接寫出,如下圖:

    

    現在開始分析倒數第二行的每一個數,現分析數字2,2可以和最後一行4相加,也可以和最後一行的5相加,但是很顯然和5相加要更大一點,結果爲7,我們此時就可以將7保存起來,然後分析數字7,7可以和最後一行的5相加,也可以和最後一行的2相加,很顯然和5相加更大,結果爲12,因此我們將12保存起來。以此類推。。我們可以得到下面這張圖:

    

    然後按同樣的道理分析倒數第三行和倒數第四行,最後分析第一行,我們可以依次得到如下結果:

    

    

    上面的推導過程相信大家不難理解,理解之後我們就可以寫出如下的遞推型動態規劃程序: 

  1. #include <iostream>    
  2. #include <algorithm>   
  3. using namespace std;   
  4.   
  5. #define MAX 101    
  6.   
  7. int D[MAX][MAX];     
  8. int n;    
  9. int maxSum[MAX][MAX];   
  10. int main(){      
  11.     int i,j;      
  12.     cin >> n;      
  13.     for(i=1;i<=n;i++)     
  14.         for(j=1;j<=i;j++)          
  15.             cin >> D[i][j];     
  16.     forint i = 1;i <= n; ++ i )       
  17.         maxSum[n][i] = D[n][i];     
  18.     forint i = n-1; i>= 1;  --i )       
  19.         forint j = 1; j <= i; ++j )           
  20.             maxSum[i][j] = max(maxSum[i+1][j],maxSum[i+1][j+1]) + D[i][j];      
  21.     cout << maxSum[1][1] << endl;    
  22. }   

     我們的代碼僅僅是這樣就夠了嗎?當然不是,我們仍然可以繼續優化,而這個優化當然是對於空間進行優化,其實完全沒必要用二維maxSum數組存儲每一個MaxSum(r,j),只要從底層一行行向上遞推,那麼只要一維數組maxSum[100]即可,即只要存儲一行的MaxSum值就可以。

     對於空間優化後的具體遞推過程如下:

    

    

    

    

    

    

    接下里的步驟就按上圖的過程一步一步推導就可以了。進一步考慮,我們甚至可以連maxSum數組都可以不要,直接用D的第n行直接替代maxSum即可。但是這裏需要強調的是:雖然節省空間,但是時間複雜度還是不變的。

    依照上面的方式,我們可以寫出如下代碼:    

  1. #include <iostream>    
  2. #include <algorithm>   
  3. using namespace std;   
  4.   
  5. #define MAX 101    
  6.   
  7. int D[MAX][MAX];    
  8. int n;   
  9. int * maxSum;   
  10.   
  11. int main(){      
  12.     int i,j;      
  13.     cin >> n;      
  14.     for(i=1;i<=n;i++)     
  15.         for(j=1;j<=i;j++)          
  16.             cin >> D[i][j];     
  17.     maxSum = D[n]; //maxSum指向第n行      
  18.     forint i = n-1; i>= 1;  --i )       
  19.         forint j = 1; j <= i; ++j )         
  20.             maxSum[j] = max(maxSum[j],maxSum[j+1]) + D[i][j];      
  21.     cout << maxSum[1] << endl;    
  22. }  

    接下來,我們就進行一下總結:

    遞歸到動規的一般轉化方法

    遞歸函數有n個參數,就定義一個n維的數組,數組的下標是遞歸函數參數的取值範圍,數組元素的值是遞歸函數的返回值,這樣就可以從邊界值開始, 逐步填充數組,相當於計算遞歸函數值的逆過程。

    動規解題的一般思路

    1. 將原問題分解爲子問題

  •     把原問題分解爲若干個子問題,子問題和原問題形式相同或類似,只不過規模變小了。子問題都解決,原問題即解決(數字三角形例)。
  •     子問題的解一旦求出就會被保存,所以每個子問題只需求 解一次。

    2.確定狀態

  •     在用動態規劃解題時,我們往往將和子問題相關的各個變量的一組取值,稱之爲一個“狀 態”。一個“狀態”對應於一個或多個子問題, 所謂某個“狀態”下的“值”,就是這個“狀 態”所對應的子問題的解。
  •     所有“狀態”的集合,構成問題的“狀態空間”。“狀態空間”的大小,與用動態規劃解決問題的時間複雜度直接相關。 在數字三角形的例子裏,一共有N×(N+1)/2個數字,所以這個問題的狀態空間裏一共就有N×(N+1)/2個狀態。

    整個問題的時間複雜度是狀態數目乘以計算每個狀態所需時間。在數字三角形裏每個“狀態”只需要經過一次,且在每個狀態上作計算所花的時間都是和N無關的常數。

    3.確定一些初始狀態(邊界狀態)的值

    以“數字三角形”爲例,初始狀態就是底邊數字,值就是底邊數字值。

    4. 確定狀態轉移方程

     定義出什麼是“狀態”,以及在該“狀態”下的“值”後,就要找出不同的狀態之間如何遷移――即如何從一個或多個“值”已知的 “狀態”,求出另一個“狀態”的“值”(遞推型)。狀態的遷移可以用遞推公式表示,此遞推公式也可被稱作“狀態轉移方程”。

    數字三角形的狀態轉移方程:

    
  

    能用動規解決的問題的特點

    1) 問題具有最優子結構性質。如果問題的最優解所包含的 子問題的解也是最優的,我們就稱該問題具有最優子結 構性質。

    2) 無後效性。當前的若干個狀態值一旦確定,則此後過程的演變就只和這若干個狀態的值有關,和之前是採取哪種手段或經過哪條路徑演變到當前的這若干個狀態,沒有關係。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章