机器学习之指标和评分:量化预测的质量

文章参考:https://scikit-learn.org/stable/modules/model_evaluation.html#clustering-metrics

1、分类指标 Classification Metrics

sklearn.metrics 模块实现了一些损失、评分和实用函数衡量分类的性能。一些指标可能需要对正类、置信度值、或二进制决策值的概率估计。大部分实现都允许每个样本通过sample_weight参数为总评分提供加权贡献。

(1)classification_report 函数:显示主要分类指标的文本报告,在报告中显示每个类别的精确度、召回率、F1值等信息。

sklearn.metrics.classfication_report(y_true,y_pred,labels=None.target_names=None,sample_weight=None,digits=2,output_dict=False)
  • y_true:真实目标值
  • y_pred:估计器预测目标值
  • labels :包含的标签索引的可选列表
  • target_names:目标类别名称
  • digits:输出浮点值的位数
  • return : 每个类别精确率和召回率、F1值
from sklearn.metrics import classification_report

y_true = [0, 1, 2, 2, 2]
y_pred = [0, 0, 2, 2, 1]
target_names = ['class 0', 'class 1', 'class 2']
print(classification_report(y_true, y_pred, target_names=target_names))
             precision    recall  f1-score   support

     class 0       0.50      1.00      0.67         1
     class 1       0.00      0.00      0.00         1
     class 2       1.00      0.67      0.80         3

    accuracy                           0.60         5
   macro avg       0.50      0.56      0.49         5
weighted avg       0.70      0.60      0.61         5

其中列表左边的一列为分类的标签名,右边support列为每个标签的出现次数.avg / total行为各列的均值(support列为总和).
precision recall f1-score三列分别为各个类别的精确度/召回率及 F1值.

(2)sklearn.metrics.f1_score

sklearn.metrics.f1_score(y_truey_predlabels=Nonepos_label=1average='binary'sample_weight=Nonezero_division='warn')


 

>>> from sklearn.metrics import f1_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> f1_score(y_true, y_pred, average='macro')
0.26...
>>> f1_score(y_true, y_pred, average='micro')
0.33...
>>> f1_score(y_true, y_pred, average='weighted')
0.26...
>>> f1_score(y_true, y_pred, average=None)
array([0.8, 0. , 0. ])
>>> y_true = [0, 0, 0, 0, 0, 0]
>>> y_pred = [0, 0, 0, 0, 0, 0]
>>> f1_score(y_true, y_pred, zero_division=1)
1.0...

(3)sklearn.metrics.precision_score

 

sklearn.metrics.precision_score(y_truey_predlabels=Nonepos_label=1average='binary'sample_weight=Nonezero_division='warn')

>>> from sklearn.metrics import precision_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> precision_score(y_true, y_pred, average='macro')
0.22...
>>> precision_score(y_true, y_pred, average='micro')
0.33...
>>> precision_score(y_true, y_pred, average='weighted')
0.22...
>>> precision_score(y_true, y_pred, average=None)
array([0.66..., 0.        , 0.        ])
>>> y_pred = [0, 0, 0, 0, 0, 0]
>>> precision_score(y_true, y_pred, average=None)
array([0.33..., 0.        , 0.        ])
>>> precision_score(y_true, y_pred, average=None, zero_division=1)
array([0.33..., 1.        , 1.        ])

(4)sklearn.metrics.recall_score

sklearn.metrics.recall_score(y_truey_predlabels=Nonepos_label=1average='binary'sample_weight=Nonezero_division='warn')

>>> from sklearn.metrics import recall_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> recall_score(y_true, y_pred, average='macro')
0.33...
>>> recall_score(y_true, y_pred, average='micro')
0.33...
>>> recall_score(y_true, y_pred, average='weighted')
0.33...
>>> recall_score(y_true, y_pred, average=None)
array([1., 0., 0.])
>>> y_true = [0, 0, 0, 0, 0, 0]
>>> recall_score(y_true, y_pred, average=None)
array([0.5, 0. , 0. ])
>>> recall_score(y_true, y_pred, average=None, zero_division=1)
array([0.5, 1. , 1. ])

(5)sklearn.metrics.roc_auc_score

sklearn.metrics.roc_auc_score(y_truey_scoreaverage='macro'sample_weight=Nonemax_fpr=Nonemulti_class='raise'labels=None)

根据预测评分计算接收器操作特征曲线ROC-AUC下方的面积

>>> import numpy as np
>>> from sklearn.metrics import roc_auc_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> roc_auc_score(y_true, y_scores)
0.75

(6)sklearn.metrics.roc_curve

sklearn.metrics.roc_curve(y_truey_scorepos_label=Nonesample_weight=Nonedrop_intermediate=True)

>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)
>>> fpr
array([0. , 0. , 0.5, 0.5, 1. ])
>>> tpr
array([0. , 0.5, 0.5, 1. , 1. ])
>>> thresholds
array([1.8 , 0.8 , 0.4 , 0.35, 0.1 ])

(7)sklearn.metrics.confusion_matrix

sklearn.metrics.confusion_matrix(y_truey_predlabels=Nonesample_weight=Nonenormalize=None)

>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],
       [0, 0, 1],
       [1, 0, 2]])

(8)sklearn.metrics.accuracy_score :分类准确率分数是指所有分类正确的百分比

sklearn.metrics.accuracy_score(y_truey_prednormalize=Truesample_weight=None)

normalize:默认值为True,返回正确分类的比例如果为False,返回正确分类的样本数

>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2

2、回归指标 Regression Metrics

(1)Max error:计算最达残留误差,该度量将捕获预测值和真实值之间的最坏情况误差。 在一个完全拟合的单输出回归模型中,训练集上的max_error将为0,尽管在现实世界中这不太可能,但该指标显示了拟合模型时的误差程度。

>>> from sklearn.metrics import max_error
>>> y_true = [3, 2, 7, 1]
>>> y_pred = [9, 2, 7, 1]
>>> max_error(y_true, y_pred)
6

(2)Mean absolute error

>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([0.5, 1. ])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.85...

(3)Mean squared error:

>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.7083...

(4) R² score, the coefficient of determination

>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='variance_weighted')
0.938...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='uniform_average')
0.936...
>>> r2_score(y_true, y_pred, multioutput='raw_values')
array([0.965..., 0.908...])
>>> r2_score(y_true, y_pred, multioutput=[0.3, 0.7])
0.925...

 

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章