作业流水调度问题 动态规划

 1、问题描述:    

     n个作业{1,2,…,n}要在由2台机器M1和M2组成的流水线上完成加工。每个作业加工的顺序都是先在M1上加工,然后在M2上加工。M1和M2加工作业i所需的时间分别为ai和bi。流水作业调度问题要求确定这n个作业的最优加工顺序,使得从第一个作业在机器M1上开始加工,到最后一个作业在机器M2上加工完成所需的时间最少。
     2、问题分析

     直观上,一个最优调度应使机器M1没有空闲时间,且机器M2的空闲时间最少。在一般情况下,机器M2上会有机器空闲和作业积压2种情况。设全部作业的集合为N={1,2,…,n}。S是N的作业子集。在一般情况下,机器M1开始加工S中作业时,机器M2还在加工其他作业,要等时间t后才可利用。将这种情况下完成S中作业所需的最短时间记为T(S,t)。流水作业调度问题的最优值为T(N,0)。    

     设π是所给n个流水作业的一个最优调度,它所需的加工时间为 aπ(1)+T’。其中T’是在机器M2的等待时间为bπ(1)时,安排作业π(2),…,π(n)所需的时间。

      记S=N-{π(1)},则有T’=T(S,bπ(1))。

      证明:事实上,由T的定义知T’>=T(S,bπ(1))。若T’>T(S,bπ(1)),设π’是作业集S在机器M2的等待时间为bπ(1)情况下的一个最优调度。则π(1),π'(2),…,π'(n)是N的一个调度,且该调度所需的时间为aπ(1)+T(S,bπ(1))<aπ(1)+T’。这与π是N的最优调度矛盾。故T’<=T(S,bπ(1))。从而T’=T(S,bπ(1))。这就证明了流水作业调度问题具有最优子结构的性质。

     由流水作业调度问题的最优子结构性质可知:

    

     从公式(1)可以看出,该问题类似一个排列问题,求N个作业的最优调度问题,利用其子结构性质,对集合中的每一个作业进行试调度,在所有的试调度中,取其中加工时间最短的作业做为选择方案。将问题规模缩小。公式(2)说明一般情况下,对作业集S进行调度,在M2机器上的等待时间,除了需要等该部件在M1机器上完成时间,还要冲抵一部分原来的等待时间,如果冲抵已成负值,自然仍需等待M1将作业做完,所以公式取max{t-ai,0}。

    4、流水作业调度的Johnson法则

     设是作业集S在机器M2的等待时间为t时的任一最优调度。若在这个调度中,安排在最前面的两个作业分别是i 和j ,即π(1)=I,π(2)=j。则有动态规划递归式可得

     其中

 

  如果作业i和j满足min{bi,aj} ≥min{bj,ai},则称作业i和j满足Johnson不等式。如果作业i和j 不满足Johnson不等式,则交换作业i和j满足Johnson不等式。

     证明 :在作业集S中,对于机器M2 的等待时间为t的调度π,交换作业i和j 的加工顺序,得到作业集S 的另一个调度π’,它所需的加工时间为T’(S,t)=ai+aj+T(S-{i,j},tji),
     当作业i和j 满足Johnson 不等式 min{bi,aj} ≥min{bj,ai}时,有

从而,tij≤tji,由此可见,换句话说,当作业i 和j不满足Johnson 不等式时,交换它们的加工顺序后,作业i和j满足Johnson 不等式,且不增加加工时间。由此可知,对于流水作业调度问题,必存在最优调度π,使得作业π(i)和π(i+1)满足Johnson 不等式


这样的调度π称为满足Johnson 法则的调度。进一步还可以证明,调度满足Johnson 法则当且仅当对任意i<j 有:


     由此可知,任意两个满足Johnson 法则的调度具有相同的加工时间,从而所有满足Johnson 法则的调度均为最优调度。

    5、流水作业调度问题Johnson算法

    从上面的分析可知,流水作业调度问题一定存在满足Johnson法则的最优调度,且容易由下面的算法确定:

    流水作业调度问题的Johnson算法:

    (1)令N1={i|ai<bi},N2={i|ai>=bi};

    (2)将N1中作业按ai的非减序排序;将N2中作业按bi的非增序排序;

    (3)N1中作业接N2中作业构成满足Johnson法则的最优调度。   

先把所有作业的ai和bi放在一起,从这之中选个最小的,如果是bi的话这个作业i就放最后,如果是ai的话这个作业就放最前,把这个已经安排好的作业从作业集中删除。重复上述步骤即可。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章