python基础9_2-协程、Greenlet协程、Gevent协程、事件驱动与IO、IO模式、I/O 多路复用之select、poll、epoll

1、协程

协程,又称微线程,是一种用户态的轻量级线程。

协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。因此:

协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。

协程的标准定义:

  1. 必须在只有一个单线程里实现并发
  2. 修改共享数据不需加锁
  3. 用户程序里自己保存多个控制流的上下文栈
  4. 一个协程遇到IO操作自动切换到其它协程

协程的优点:

  • 无需线程上下文切换的开销
  • 无需原子操作锁定及同步的开销
    • “原子操作(atomic operation)是不需要synchronized”,所谓原子操作是指不会被线程调度机制打断的操作;这种操作一旦开始,就一直运行到结束,中间不会有任何 context switch (切换到另一个线程)。原子操作可以是一个步骤,也可以是多个操作步骤,但是其顺序是不可以被打乱,或者切割掉只执行部分。视作整体是原子性的核心。
  • 方便切换控制流,简化编程模型
  • 高并发+高扩展性+低成本:一个CPU支持上万的协程都不是问题。所以很适合用于高并发处理

协程的缺点:

  • 无法利用多核资源:协程的本质是个单线程,它不能同时将 单个CPU 的多个核用上,协程需要和进程配合才能运行在多CPU上.当然我们日常所编写的绝大部分应用都没有这个必要,除非是cpu密集型应用。
  • 进行阻塞(Blocking)操作(如IO时)会阻塞掉整个程序

使用yield实现最简单的协程的例子

import time

def consumer(name):
    print("--->starting eating baozi...")
    while True:
        new_baozi = yield
        print("[%s] is eating baozi %s" % (name,new_baozi))
        #time.sleep(1)
 
def producer():
 
    r = con.__next__()
    r = con2.__next__()
    n = 0
    while n < 5:
        n +=1
        con.send(n)
        con2.send(n)
        print("\033[32;1m[producer]\033[0m is making baozi %s" %n )
 
 
if __name__ == '__main__':
    con = consumer("c1")
    con2 = consumer("c2")
    p = producer()

2、Greenlet协程

greenlet是一个用C实现的封装了的协程模块,相比与python自带的yield,它可以使你在任意函数之间随意切换(手动切换),而不需把这个函数先声明为generator

from greenlet import greenlet
 
 
def test1():
    print(12)
    gr2.switch()
    print(34)
    gr2.switch()
 
 
def test2():
    print(56)
    gr1.switch()
    print(78)
 
 
gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()

但好像还没有解决一个问题,就是遇到IO操作,需要手动切换,那如何自动切换?

3、Gevent协程

gevent不需要手动切换,可以实现自动切换

# Author: 73

import gevent


def func1():
    print("func1 start...")
    gevent.sleep(2)
    print("func1 end...")


def func2():
    print("func2 start...")
    gevent.sleep(1)
    print("func2 end...")

def func3():
    print("func3 start...")
    gevent.sleep(0)
    print("func3 end...")

gevent.joinall([
    gevent.spawn(func1),
    gevent.spawn(func2),
    gevent.spawn(func3),
])

'''
func1 start...
func2 start...
func3 start...
func3 end...
func2 end...
func1 end...

Process finished with exit code 0
'''

通过gevent的异步功能,实现一个简单的爬取网页的功能

下面程序的重要部分是将f函数封装到Greenlet内部线程的gevent.spawn。 初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,后者阻塞当前流程,并执行所有给定的greenlet。执行流程只会在 所有greenlet执行完后才会继续向下走

遇到IO阻塞时会自动切换任务

# Author: 73

import gevent,time
from urllib.request import urlopen
from gevent import monkey

'''
存在一个问题:
gevent检测不到urllib进行了io操作
所以需要monkey
'''

monkey.patch_all() # 把当前程序的所有的io操作给我单独做上标记

def f(url):
    print('GET: %s' % url)
    resp = urlopen(url)
    data = resp.read()
    # f = open("url.txt", "wb")
    # f.write(data)
    # f.close()
    print('%d bytes received from %s.' % (len(data), url))

start_time = time.time()
urls = [
    'https://www.csdn.net',
    'https://www.baidu.com/',
    'https://github.com/',
]
for i in urls:
    f(i)
print("同步cost: ", (time.time()-start_time))

start_time = time.time()
gevent.joinall([
    gevent.spawn(f, 'https://www.csdn.net'),
    gevent.spawn(f, 'https://www.baidu.com/'),
    gevent.spawn(f, 'https://github.com/'),
])
print("异步cost: ", (time.time()-start_time))

通过gevent实现单线程下的多socket并发

server

# Author: 73

import gevent
from gevent import monkey

monkey.patch_all()

import socket

def server(port):
    s = socket.socket()
    s.bind(("0.0.0.0", port))
    s.listen(10)
    while 1:
        conn, addr = s.accept()
        gevent.spawn(handle_request, conn)

def handle_request(conn):
    try:
        while 1:
            data = conn.recv(1024)
            if not data:
                conn.shutdown(socket.SHUT_WR)
            print("recv", data)
            conn.send(data)

    except Exception as ex:
        print(ex)
    finally:
        conn.close()

if __name__ == "__main__":
    server(8000)

client

# Author: 73

import socket

HOST = "localhost"
PORT = 8000
c = socket.socket()
c.connect((HOST, PORT))
while 1:
    msg = (input("input msg: "))
    c.sendall(msg.encode("utf-8"))
    data = c.recv(1024)
    print(data)
c.close()

到这里我们已经实现了自动切换的功能,但还有一个问题,比如我们的一个协程遇到IO操作,切到别的协程去了,那么我们怎么知道什么时候该切回来呢?

4、事件驱动与IO

一般,写服务器处理模型的程序时,有以下几种模型:

  1. 每收到一个请求,创建一个新的进程,来处理该请求;
  2. 每收到一个请求,创建一个新的线程,来处理该请求;
  3. 每收到一个请求,放入一个事件列表,让主进程通过非阻塞I/O方式来处理请求

第1种方法,创建新的进程的开销比较大,会导致服务器性能比较差,但实现比较简单。
第2种方式,由于要涉及到线程的同步,有可能会面临死锁等问题。
第3种方式,在写应用程序代码时,逻辑比前面两种都复杂。
综合考虑各方面因素,一般普遍认为第3种方式是大多数网络服务器采用的方式

事件驱动模型

在UI编程中,常常要对鼠标点击进行相应,那么如何获得鼠标点击呢?

方式一:创建一个线程,该线程一直循环检测是否有鼠标点击

  • 缺点:CPU资源浪费,可能鼠标点击的频率非常小,但是扫描线程还是会一直循环检测,这会造成很多的CPU资源浪费

方式二:事件驱动模型

目前大部分的UI编程都是事件驱动模型,如很多UI平台都会提供onClick()事件,这个事件就代表鼠标按下事件。事件驱动模型大体思路如下:

  1. 有一个事件(消息)队列;
  2. 鼠标按下时,往这个队列中增加一个点击事件(消息);
  3. 有个循环,不断从队列取出事件,根据不同的事件,调用不同的函数,如onClick()、onKeyDown()等;
  4. 事件(消息)一般都各自保存各自的处理函数指针,这样,每个消息都有独立的处理函数;

在这里插入图片描述
事件驱动编程是一种编程范式,这里程序的执行流由外部事件来决定。它的特点是包含一个事件循环,当外部事件发生时使用回调机制来触发相应的处理。另外两种常见的编程范式是(单线程)同步 以及 多线程编程。

下图展示了随着时间的推移,这三种模式下程序所做的工作。这个程序有3个任务需要完成,每个任务都在等待I/O操作时阻塞自身。阻塞在I/O操作上所花费的时间已经用灰色框标示出来了。
在这里插入图片描述
单线程同步模型中,任务按照顺序执行。如果某个任务因为I/O而阻塞,其他所有的任务都必须等待,直到它完成之后它们才能依次执行。这种明确的执行顺序和串行化处理的行为是很容易推断得出的。如果任务之间并没有互相依赖的关系,但仍然需要互相等待的话这就使得程序不必要的降低了运行速度。

多线程版本中,这3个任务分别在独立的线程中执行。这些线程由操作系统来管理,在多处理器系统上可以并行处理,或者在单处理器系统上交错执行。这使得当某个线程阻塞在某个资源的同时其他线程得以继续执行。与完成类似功能的同步程序相比,这种方式更有效率,但程序员必须写代码来保护共享资源,防止其被多个线程同时访问。多线程程序更加难以推断,因为这类程序不得不通过线程同步机制如锁、可重入函数、线程局部存储或者其他机制来处理线程安全问题,如果实现不当就会导致出现微妙且令人痛不欲生的bug。

事件驱动版本的程序中,3个任务交错执行,但仍然在一个单独的线程控制中。当处理I/O或者其他昂贵的操作时,注册一个回调到事件循环中,然后当I/O操作完成时继续执行。回调描述了该如何处理某个事件。事件循环轮询所有的事件,当事件到来时将它们分配给等待处理事件的回调函数。这种方式让程序尽可能的得以执行而不需要用到额外的线程。事件驱动型程序比多线程程序更容易推断出行为,因为程序员不需要关心线程安全问题。

当我们面对如下的环境时,事件驱动模型通常是一个好的选择:

  1. 程序中有许多任务,而且…
  2. 任务之间高度独立(因此它们不需要互相通信,或者等待彼此)而且…
  3. 在等待事件到来时,某些任务会阻塞。

当应用程序需要在任务间共享可变的数据时,这也是一个不错的选择,因为这里不需要采用同步处理。

网络应用程序通常都有上述这些特点,这使得它们能够很好的契合事件驱动编程模型。

5、 IO模式

基本概念

用户空间与内核空间

现在操作系统都是采用虚拟存储器,那么对32位操作系统而言,它的寻址空间(虚拟存储空间)为4G(2的32次方)。操作系统的核心是内核,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限。为了保证用户进程不能直接操作内核(kernel),保证内核的安全,操心系统将虚拟空间划分为两部分,一部分为内核空间,一部分为用户空间。针对linux操作系统而言,将最高的1G字节(从虚拟地址0xC0000000到0xFFFFFFFF),供内核使用,称为内核空间,而将较低的3G字节(从虚拟地址0x00000000到0xBFFFFFFF),供各个进程使用,称为用户空间。

进程切换

为了控制进程的执行,内核必须有能力挂起正在CPU上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。因此可以说,任何进程都是在操作系统内核的支持下运行的,是与内核紧密相关的。
从一个进程的运行转到另一个进程上运行,这个过程中经过下面这些变化:

  1. 保存处理机上下文,包括程序计数器和其他寄存器。
  2. 更新PCB信息。
  3. 把进程的PCB移入相应的队列,如就绪、在某事件阻塞等队列。
  4. 选择另一个进程执行,并更新其PCB。
  5. 更新内存管理的数据结构。
  6. 恢复处理机上下文。

注:PCB通常是系统内存占用区中的一个连续存区,它存放着操作系统用于描述进程情况及控制进程运行所需的全部信息

进程的阻塞

正在执行的进程,由于期待的某些事件未发生,如请求系统资源失败、等待某种操作的完成、新数据尚未到达或无新工作做等,则由系统自动执行阻塞原语(Block),使自己由运行状态变为阻塞状态。可见,进程的阻塞是进程自身的一种主动行为,也因此只有处于运行态的进程(获得CPU),才可能将其转为阻塞状态。当进程进入阻塞状态,是不占用CPU资源的。

文件描述符fd

文件描述符(File descriptor)是计算机科学中的一个术语,是一个用于表述指向文件的引用的抽象化概念。
文件描述符在形式上是一个非负整数。实际上,它是一个索引值,指向内核为每一个进程所维护的该进程打开文件的记录表。当程序打开一个现有文件或者创建一个新文件时,内核向进程返回一个文件描述符。在程序设计中,一些涉及底层的程序编写往往会围绕着文件描述符展开。但是文件描述符这一概念往往只适用于UNIX、Linux这样的操作系统。

缓存 I/O

缓存 I/O 又被称作标准 I/O,大多数文件系统的默认 I/O 操作都是缓存 I/O。在 Linux 的缓存 I/O 机制中,操作系统会将 I/O 的数据缓存在文件系统的页缓存( page cache )中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。
缓存 I/O 的缺点:

  • 数据在传输过程中需要在应用程序地址空间和内核进行多次数据拷贝操作,这些数据拷贝操作所带来的 CPU 以及内存开销是非常大的。

5种IO模式

对于一次IO访问(以read举例),数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。所以说,当一个read操作发生时,它会经历两个阶段:

  1. 等待数据准备 (Waiting for the data to be ready)
  2. 将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)

正式因为这两个阶段,linux系统产生了下面五种网络模式的方案。

  • 阻塞 I/O(blocking IO)
  • 非阻塞 I/O(nonblocking IO)
  • I/O 多路复用( IO multiplexing)
  • 信号驱动 I/O( signal driven IO)
  • 异步 I/O(asynchronous IO)

阻塞 I/O(blocking IO)
在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:
在这里插入图片描述
当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据(对于网络IO来说,很多时候数据在一开始还没有到达。比如,还没有收到一个完整的UDP包。这个时候kernel就要等待足够的数据到来)。这个过程需要等待,也就是说数据被拷贝到操作系统内核的缓冲区中是需要一个过程的。而在用户进程这边,整个进程会被阻塞(当然,是进程自己选择的阻塞)。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。
所以,blocking IO的特点就是在IO执行的两个阶段都被block了。

非阻塞 I/O(nonblocking IO)
linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:
在这里插入图片描述
当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回。
所以,nonblocking IO的特点是用户进程需要不断的主动询问kernel数据好了没有。

I/O 多路复用( IO multiplexing)
IO multiplexing主要包括select、poll、epoll。select/epoll的好处就在於单个process就可以同时处理多个网络连接的IO。它的基本原理就是select,poll,epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。
在这里插入图片描述
当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。
所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪状态,select()函数就可以返回。

异步 I/O(asynchronous IO)
在这里插入图片描述
用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。

小结

blocking和non-blocking的区别
调用blocking IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回。

synchronous IO和asynchronous IO的区别
synchronous IO做"IO operation"的时候会将process阻塞。按照这个定义,之前所述的blocking IO,non-blocking IO,IO multiplexing都属于synchronous IO。
而asynchronous IO则不一样,当进程发起IO 操作之后,就直接返回再也不理睬了,直到kernel发送一个信号,告诉进程说IO完成。在这整个过程中,进程完全没有被block。

在这里插入图片描述

6、I/O 多路复用之select、poll、epoll

select
select最早于1983年出现在4.2BSD中,它通过一个select()系统调用来监视多个文件描述符的数组,当select()返回后,该数组中就绪的文件描述符便会被内核修改标志位,使得进程可以获得这些文件描述符从而进行后续的读写操作。

select目前几乎在所有的平台上支持,其良好跨平台支持也是它的一个优点,事实上从现在看来,这也是它所剩不多的优点之一。

select的一个缺点在於单个进程能够监视的文件描述符的数量存在最大限制,在Linux上一般为1024,不过可以通过修改宏定义甚至重新编译内核的方式提升这一限制。

另外,select()所维护的存储大量文件描述符的数据结构,随着文件描述符数量的增大,其复制的开销也线性增长。同时,由于网络响应时间的延迟使得大量TCP连接处于非活跃状态,但调用select()会对所有socket进行一次线性扫描,所以这也浪费了一定的开销。

==poll ==
poll在1986年诞生于System V Release 3,它和select在本质上没有多大差别,但是poll没有最大文件描述符数量的限制。

poll和select同样存在一个缺点就是,包含大量文件描述符的数组被整体复制于用户态和内核的地址空间之间,而不论这些文件描述符是否就绪,它的开销随着文件描述符数量的增加而线性增大。

另外,select()和poll()将就绪的文件描述符告诉进程后,如果进程没有对其进行IO操作,那么下次调用select()和poll()的时候将再次报告这些文件描述符,所以它们一般不会丢失就绪的消息,这种方式称为水平触发(Level Triggered)。

epoll
直到Linux2.6才出现了由内核直接支持的实现方法,那就是epoll,它几乎具备了之前所说的一切优点,被公认为Linux2.6下性能最好的多路I/O就绪通知方法。

epoll可以同时支持水平触发和边缘触发(Edge Triggered,只告诉进程哪些文件描述符刚刚变为就绪状态,它只说一遍,如果我们没有采取行动,那么它将不会再次告知,这种方式称为边缘触发),理论上边缘触发的性能要更高一些,但是代码实现相当复杂。

epoll同样只告知那些就绪的文件描述符,而且当我们调用epoll_wait()获得就绪文件描述符时,返回的不是实际的描述符,而是一个代表就绪描述符数量的值,你只需要去epoll指定的一个数组中依次取得相应数量的文件描述符即可,这里也使用了内存映射(mmap)技术,这样便彻底省掉了这些文件描述符在系统调用时复制的开销。

另一个本质的改进在于epoll采用基于事件的就绪通知方式。在select/poll中,进程只有在调用一定的方法后,内核才对所有监视的文件描述符进行扫描,而epoll事先通过epoll_ctl()来注册一个文件描述符,一旦基于某个文件描述符就绪时,内核会采用类似callback的回调机制,迅速激活这个文件描述符,当进程调用epoll_wait()时便得到通知。

用select实现多并发的socketserver

# Author: 73

import socket, select, queue

server = socket.socket()
server.bind(("localhost", 8001))
server.listen(1000)

server.setblocking(False) # 不阻塞

inputs = [server]
outputs = []
msg_dic = {}

while 1:
    readable, writeable, exceptional =  select.select(inputs, outputs, inputs)
    for r in readable:
        if r is server: # 代表一个新连接
            conn, addr = server.accept()
            print("来了个新连接:", conn)
            inputs.append(conn) # 是因为这个新建立的连接还没发数据过来,现在就接收的话程序就报错;要想实现这个客户端发数据来的时候,server端能知道,就要让select再监测这个conn
            msg_dic[conn] = queue.Queue() # 初始化一个队列,后面存要返回给这个客户端的数据
        else:
            data = r.recv(1024)
            if not data:
                continue
            print(data)
            #r.send(data)
            msg_dic[r].put(data)

            outputs.append(r)  # 放入返回的连接队列里
            print("send done...")

    for w in writeable: #要返回给客户端的连接列表
        data_to_client = msg_dic[w].get()
        w.send(data_to_client)

        outputs.remove(w) # 保证下次循环writeable的时候,不返回这个已经处理完的连接

    for e in exceptional:
        if e in outputs:
            outputs.remove(e)
        inputs.remove(e)
        del msg_dic[e]

上面的功能其实有封装好的类,可以直接拿来调用,就是selector模块
该模块默认用epoll,但是如果系统(比如windows)不支持epoll,那么它就会用select

import selectors
import socket
 
sel = selectors.DefaultSelector()
 
def accept(sock, mask):
    conn, addr = sock.accept()  # Should be ready
    print('accepted', conn, 'from', addr)
    conn.setblocking(False)
    sel.register(conn, selectors.EVENT_READ, read)
 
def read(conn, mask):
    data = conn.recv(1000)  # Should be ready
    if data:
        print('echoing', repr(data), 'to', conn)
        conn.send(data)  # Hope it won't block
    else:
        print('closing', conn)
        sel.unregister(conn)
        conn.close()
 
sock = socket.socket()
sock.bind(('localhost', 10000))
sock.listen(100)
sock.setblocking(False)
sel.register(sock, selectors.EVENT_READ, accept)
 
while True:
    events = sel.select()
    for key, mask in events:
        callback = key.data
        callback(key.fileobj, mask)

参考文档:
https://www.cnblogs.com/alex3714/p/4372426.html
https://www.cnblogs.com/alex3714/articles/5876749.html

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章