Kubernetes:创建和分配Kubernetes Pod安全策略

目录

Pod Security Policies(PSP)

Pod的安全策略配置

1.PodSecurityPolicy的工作机制

2.PodSecurityPolicy配置详情

2.1.特权模式相关配置

2.2.宿主机资源相关配置

2.3.用户和组相关配置

       2.4.提升权限相关配置

      2.5.Linux能力相关配置

     2.6.SELinux相关配置

     2.7.其他Linux相关配置

示例的PodSecurityPolicy安全策略配置

例1:基本没有限制的安全策略,允许创建任意安全设置的Pod。

例2:要求Pod运行用户为非特权用户;禁止提升权限;不允许使用宿主机网络、端口号、IPC等资源;限制可以使用的Volume类型,等等。

分配Kubernetes Pod安全策略

Security Context

Container-level Security Context

Container级别可以设置的安全策略类型

Pod-level Security Context

Pod级别可以设置的安全策略类型


Pod Security Policies(PSP)

Pod Security Policies(PSP)是集群级的Pod安全策略,自动为集群内的Pod和Volume设置Security Context。

使用PSP需要API Server开启extensions/v1beta1/podsecuritypolicy,并且配置PodSecurityPolicyadmission控制器。

Pod的安全策略配置

Pod 安全策略 是集群级别的资源,它能够控制 Pod 运行的行为,以及它具有访问什么的能力。 

为了更精细地控制Pod对资源的使用方式,Kubernetes从1.4版本开始引入了PodSecurityPolicy资源对象对Pod的安全策略进行管理,并在1.10版本中升级为Beta版,到1.14版本时趋于成熟。

1.PodSecurityPolicy的工作机制

若想启用PodSecurityPolicy机制,则需要在kube-apiserver服务的启动参数--enable-admission-plugins中进行设置:

如果是高可用,所有apiserver均需要修改

kubectl edit pod -n kube-system kube-apiserver-k8s-master
--enable-admission-plugins=PodSecurityPolicy

kube-apiserver-k8s-master,值得是你apiserver组件的pod名称

在开启PodSecurityPolicy准入控制器后,Kubernetes默认不允许创建任何Pod,需要创建PodSecurityPolicy策略和相应的RBAC授权策略(Authorizing Policies),Pod才能创建成功。

例如,尝试创建如下Pod:

apiVersion: v1
kind: Pod
metadata:
  name: nginx
spec:
  containers:
  - name: nginx
    image: nginx

使用Kubectl命令创建时,系统将提示“禁止创建”的报错信息

接下来创建一个PodSecurityPolicy,配置文件psp-non-privileged.yaml的内容如下:

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: psp-non-privileged
spec:
  privileged: false # 不允许特权模式的Pod
  seLinux:
    rule: RunAsAny
  supplementalGroups:
    rule: RunAsAny
  runAsUser:
    rule: RunAsAny
  fsGroup:
    rule: RunAsAny
  volumes:
  - '*'

之后再次创建Pod既可成功。

上面的PodSecurityPolicy“psp-non-privileged”设置了privileged: false,表示不允许创建特权模式的Pod。

在下面的YAML配置文件pod-privileged.yaml中为Pod设置了特权模式:

apiVersion: v1
kind: Pod
metadata:
  name: nginx
spec:
  containers:
  - name: nginx
    image: nginx
    securityContext:
      privileged: true

创建Pod时,系统将提示“禁止创建特权模式的Pod”的报错信息.

2.PodSecurityPolicy配置详情

在PodSecurityPolicy对象中可以设置下列字段来控制Pod运行时的各种安全策略。

Pod 安全策略 由设置和策略组成,它们能够控制 Pod 访问的安全特征。这些设置分为如下三类:

  • 基于布尔值控制 :这种类型的字段默认为最严格限制的值。
  • 基于被允许的值集合控制 :这种类型的字段会与这组值进行对比,以确认值被允许。
  • 基于策略控制 :设置项通过一种策略提供的机制来生成该值,这种机制能够确保指定的值落在被允许的这组值中。

2.1.特权模式相关配置

privileged:是否允许Pod以特权模式运行。

2.2.宿主机资源相关配置

(1)hostPID:是否允许Pod共享宿主机的进程空间。
(2)hostIPC:是否允许Pod共享宿主机的IPC命名空间。
(3)hostNetwork:是否允许Pod使用宿主机网络的命名空间。
(4)hostPorts:是否允许Pod使用宿主机的端口号,可以通过hostPortRange字段设置允许使用的端口号范围,以【min,max】设置最小端口号和最大端口号。
(5)Volumes:允许Pod使用的存储卷Volume类型,设置为“*”表示允许使用任意Volume类型,建议至少允许Pod使用下列Volume类型。

  • configMap
  • downwardAPI
  • emptyDir
  • persistentVolumeClaim
  • secret
  • projected

(6)AllowedHostPaths:允许Pod使用宿主机的hostPath路径名称,可以通过pathPrefix字段设置路径的前缀,并可以设置是否为只读属性,例子如下。

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: allow-hostpath-volumes
spec:
  volumes:
  - hostPath
  allowedHostPaths:
  - pathPrefix: "/foo"
    readOnly: true

结果为允许Pod访问宿主机上以“/foo”为前缀的路径,包括“/foo”“/foo/”“/foo/bar”等,但不能访问“/fool”“/etc/foo”等路径,也不允许通过“/foo/../”表达式访问/foo的上层目录。

(7)FSGroup:设置允许访问某些Volume的Group ID范围,可以将规则(rule字段)设置为MustRunAs、MayRunAs或RunAsAny。

  • MustRunAs:需要设置Group ID的范围,例如1~65535,要求Pod的securityContext.fsGroup设置的值必须属于该Group ID的范围。
  • MayRunAs:需要设置Group ID的范围,例如1~65535,不强制要求Pod设置securityContext.fsGroup。
  • RunAsAny:不限制Group ID的范围,任何Group都可以访问Volume。

(8)ReadOnlyRootFilesystem:要求容器运行的根文件系统(root filesystem)必须是只读的。
(9)allowedFlexVolumes:对于类型为flexVolume的存储卷,设置允许使用的驱动类型,例子如下。

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: allow-flex-volumes
spec:
  volumes:
  - flexVolume
  allowedFlexVolumes:
  - driver: example/lvm
  - driver: example/cifs

2.3.用户和组相关配置

(1)RunAsUser:设置运行容器的用户ID(User ID)范围,规则字段(rule)的值可以被设置为MustRunAs、MustRunAsNonRoot或RunAsAny。

  • MustRunAs:需要设置User ID的范围,要求Pod的securityContext.runAsUser设置的值必须属于该User ID的范围。
  • MustRunAsNonRoot:必须以非root用户运行容器,要求Pod的securityContext.runAsUser设置一个非0的用户ID,或者镜像中在USER字段设置了用户ID,建议同时设置allowPrivilegeEscalation=false以避免不必要的提升权限操作。
  • RunAsAny:不限制User ID的范围,任何User都可以运行。

(2)RunAsGroup:设置运行容器的Group ID范围,规则字段的值可以被设置为MustRunAs、MustRunAsNonRoot或RunAsAny。

  • MustRunAs:需要设置Group ID的范围,要求Pod的securityContext.runAsGroup设置的值必须属于该Group ID的范围。
  • MustRunAsNonRoot:必须以非root组运行容器,要求Pod的securityContext.runAsUser设置一个非0的用户ID,或者镜像中在USER字段设置了用户ID,建议同时设置allowPrivilegeEscalation=false以避免不必要的提升权限操作。
  • RunAsAny:不限制Group ID的范围,任何Group的用户都可以运行

(3)SupplementalGroups:设置容器可以额外添加的Group ID范围,可以将规则(rule字段)设置为MustRunAs、MayRunAs或RunAsAny。

  • MustRunAs:需要设置Group ID的范围,要求Pod的securityContext.supplementalGroups设置的值必须属于该Group ID范围。
  • MayRunAs:需要设置Group ID的范围,不强制要求Pod设置securityContext.supplementalGroups。
  • RunAsAny:不限制Group ID的范围,任何supplementalGroups的用户都可以运行。

2.4.提升权限相关配置

(1)AllowPrivilegeEscalation:设置容器内的子进程是否可以提升权限,通常在设置非root用户(MustRunAsNonRoot)时进行设置。
(2)DefaultAllowPrivilegeEscalation:设置AllowPrivilegeEscalation的默认值,设置为disallow时,管理员还可以显式设置AllowPrivilegeEscalation来指定是否允许提升权限。

2.5.Linux能力相关配置

(1)AllowedCapabilities:设置容器可以使用的Linux能力列表,设置为“*”表示允许使用Linux的所有能力(如NET_ADMIN、SYS_TIME等)。
(2)RequiredDropCapabilities:设置不允许容器使用的Linux能力列表。
(3)DefaultAddCapabilities:设置默认为容器添加的Linux能力列表,例如SYS_TIME等,Docker建议默认设置的Linux能力请查看https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities。

2.6.SELinux相关配置

seLinux:设置SELinux参数,可以将规则字段(rule)的值设置为MustRunAs或RunAsAny。

  • MustRunAs:要求设置seLinuxOptions,系统将对Pod的securityContext.seLinuxOptions设置的值进行校验。
  • RunAsAny:不限制seLinuxOptions的设置。

2.7.其他Linux相关配置

(1)AllowedProcMountTypes:设置允许的ProcMountTypes类型列表,可以设置allowedProcMountTypes或DefaultProcMount。
(2)AppArmor:设置对容器可执行程序的访问控制权限,详情请参考https://kubernetes.io/docs/tutorials/clusters/apparmor/#podsecuritypolicy-annotations
(3)Seccomp:设置允许容器使用的系统调用(System Calls)的profile。
(4)Sysctl:设置允许调整的内核参数,详情请参考https://kubernetes.io/docs/concepts/cluster-administration/sysctl-cluster/#podsecuritypolicy

示例的PodSecurityPolicy安全策略配置

例1:基本没有限制的安全策略,允许创建任意安全设置的Pod。

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: privileged
  annotations:
    seccomp.security.alpha.kubernetes.io/allowedProfileNames: '*'
spec:
  privileged: true
  allowPrivilegeEscalation: true
  allowedCapabilities:
  - '*'
  volumes:
  - '*'
  hostNetwork: true
  hostPorts:
  - min: 0
    max: 65535
  hostIPC: true
  hostPID: true
  runAsUser:
    rule: 'RunAsAny'
  seLinux:
    rule: 'RunAsAny'
  supplementalGroups:
    rule: 'RunAsAny'
  fsGroup:
    rule: 'RunAsAny'

例2:要求Pod运行用户为非特权用户;禁止提升权限;不允许使用宿主机网络、端口号、IPC等资源;限制可以使用的Volume类型,等等。

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: restricted
  annotations:
    seccomp.security.alpha.kubernetes.io/allowedProfileNames: 'docker/default'
    apparmor.security.beta.kubernetes.io/allowedProfileNames: 'runtime/default'
    seccomp.security.alpha.kubernetes.io/defaultProfileName: 'docker/default'
    apparmor.security.beta.kubernetes.io/dafaultProfileName: 'runtime/default'
spec:
  privileged: false
  allowPrivilegeEscalation: false
  requiredDropCapabilities:
  - ALL
  volumes:
  - 'configMap'
  - 'emptyDir'
  - 'projected'
  - 'secret'
  - 'downwardAPI'
  - 'persistentVolumeClaim'
  hostNetwork: false
  hostIPC: false
  hostPID: false
  runAsUser:
    rule: 'MustRunAsNonRoot'
  seLinux:
    rule: 'MustRunAs'
    ranges:
    - min: 1
      max: 65535
  fsGroup:
    rule: 'MustRunAs'
    ranges:
    - min: 1
      max: 65535
  readOnlyRootFilesystem: false

分配Kubernetes Pod安全策略

Kubernetes建议使用RBAC授权机制来设置针对Pod安全策略的授权,通常应该对Pod的ServiceAccount进行授权。

角色的访问控制(RBAC)是kubernetes标准的授权模式,并且很容应用于Pod安全策略。借助RBAC,你可以将Pod安全策略分配给应用。

为此,我们将创建一个新的YAML文件,该文件不仅会创建集群范围的角色(使用ClusterRole定义),还将创建集群绑定(使用ClusterRoleBinding定义),以向每个经过身份验证的用户授予访问权限。

例如,可以创建如下ClusterRole(也可以创建Role)并将其设置为允许使用PodSecurityPolicy:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: <role name>
rules:
- apiGroup: ['policy']
  resources: ['podsecuritypolicies']
  verbs: ['use']
  resourceNames:
  - <list of policies to authorize>  # 允许使用的PodSecurityPolicy列表

然后创建一个ClusterRoleBinding与用户和ServiceAccount进行绑定:

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: <binding name>
roleRef:
  kind: ClusterRole
  name: <roke name>  # 之前创建的ClusterRole名称
  apiGroup: rbac.authorization.k8s.io
subjects:
# 对特定Namespace中的ServiceAccount进行授权
- kind: ServiceAccount
  name: <authorized servie account name> # ServiceAccount 的名称
  namespace: <authorized pod namespace> # Namespace的名称
# 对特定用户进行授权(不推荐)
- kind: User
  apiGroup: rbac.authorization.k8s.io
  name: <authorized user name>  # 用户名

也可以创建RoleBinding对与该RoleBinding相同的Namespace中的Pod进行授权,通常可以与某个系统级别的Group关联配置,例如:

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: <binding name>
  namespace: <binding namespace>  # 该RoleBinding 所属的Namespace
roleRef:
  kind: Role
  name: <role name>
  apiGroup: rbac.authorization.k8s.io
subjects:
# 授权该Namespace中的全部ServiceAccount
- kind: Group
  apiGroup: rbac.authorization.k8s.io
  name: system:serviceaccounts
# 授权该Namespace中的全部哦用户
- kind: Group
  apiGroup: rbac.authorization.k8s.io
  name: system:authenticated

Security Context

通过上文,我们了解了PodSecurityPolicy策略,知道了

  • 在系统管理员对Kubernetes集群中设置了PodSecurityPolicy策略之后,系统将对Pod和Container级别的安全设置进行校验,对于不满足PodSecurityPolicy安全策略的Pod,系统将拒绝创建。

但除此之外还有个,securityContext

  • Pod和容器的安全策略可以在Pod或Container的securityContext字段中进行设置,如果在Pod和Container级别都设置了相同的安全类型字段,容器将使用Container级别的设置。

Security Context的目的是限制不可信容器的行为,保护系统和其他容器不受其影响。

要为Pod指定安全设置,请securityContext在Pod规范中包括该字段。该securityContext字段是 PodSecurityContext对象。

Kubernetes提供了三种配置Security Context的方法:

  • Container-level Security Context:仅应用到指定的容器
  • Pod-level Security Context:应用到Pod内所有容器以及Volume
  • Pod Security Policies(PSP):应用到集群内部所有Pod以及Volume

Container-level Security Context

Container-level Security Context仅应用到指定的容器上,并且不会影响Volume。

Container级别可以设置的安全策略类型

  • runAsUser:容器内运行程序的用户ID。
  • runAsGroup:容器内运行程序的用户组ID。
  • runAsNonRoot:是否必须以非root用户运行程序。
  • privileged:是否以特权模式运行。
  • allowPrivilegeEscalation:是否允许提升权限。
  • readOnlyRootFilesystem:根文件系统是否为只读属性。
  • capabilities:Linux能力列表。
  • seLinuxOptions:SELinux相关设置。

比如

例1:Container级别的安全设置,作用于特定的容器。

apiVersion: v1
kind: Pod
metadata:
  name: security-context-demo-2
spec:
  securityContext:
    runAsUser: 1000
  containers:
  - name: sec-ctx-demo-2
    image: tomcat
    securityContext:
      runAsUser: 2000
      allowPrivilegeEscalation: false

创建该Pod之后进入容器环境,查看到运行进程的用户ID为2000:

例2:为Container设置可用的Linux能力,为容器设置允许使用的Linux能力包括NET_ADMIN和SYS_TIME。

apiVersion: v1
kind: Pod
metadata:
  name: security-context-demo-3
spec:
  containers:
  - name: sec-ctx-3
    image: tomcat
    securityContext:
      capabilities:
        add: ["NET_ADMIN","SYS_TIME"]

 

创建该Pod之后进入容器环境,查看1号进程的Linux能力设置:

Pod-level Security Context

Pod-level Security Context应用到Pod内所有容器,并且还会影响Volume(包括fsGroup和selinuxOptions)。

apiVersion: v1
kind: Pod
metadata:
  name: security-context-demo
spec:
  securityContext:
    runAsUser: 1000
    runAsGroup: 3000
    fsGroup: 2000
  volumes:
  - name: sec-ctx-vol
    emptyDir: {}
  containers:
  - name: sec-ctx-demo
    image: tomcat
    volumeMounts:
    - name: sec-ctx-vol
      mountPath: /data/demo
    securityContext:
      allowPrivilegeEscalation: false

 在spec.securityContext中设置了如下参数。

  • runAsUser=1000:所有容器都将以User ID 1000运行程序,所有新生成文件的User ID也被设置为1000。
  • runAsGroup=3000:所有容器都将以Group ID 3000运行程序,所有新生成文件的Group ID也被设置为3000。
  • fsGroup=2000:挂载的卷“/data/demo”及其中创建的文件都将属于Group ID 2000。
  • 创建该Pod之后进入容器环境,查看到运行进程的用户ID为1000:
  • 查看从Volume挂载到容器的/data/demo目录,其Group ID为2000
  • 在该目录下创建一个新文件,可见其用户ID为1000,组ID为2000:

Pod级别可以设置的安全策略类型

  • runAsUser:容器内运行程序的用户ID。
  • runAsGroup:容器内运行程序的用户组ID。
  • runAsNonRoot:是否必须以非root用户运行程序。
  • fsGroup:SELinux相关设置。
  • seLinuxOptions:SELinux相关设置。
  • supplementalGroups:允许容器使用的其他用户组ID。
  • sysctls:设置允许调整的内核参数。

参考链接:

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

https://kubernetes.io/zh/docs/concepts/policy/pod-security-policy/

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#securitycontext-v1-core

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章