線程池,多線程,線程種類

1. 爲什麼使用線程池

諸如 Web 服務器、數據庫服務器、文件服務器或郵件服務器之類的許多服務器應用程序都面向處理來自某些遠程來源的大量短小的任務。請求以某種方式到達服務器,這種方式可能是通過網絡協議(例如 HTTP、FTP 或 POP)、通過 JMS 隊列或者可能通過輪詢數據庫。不管請求如何到達,服務器應用程序中經常出現的情況是:單個任務處理的時間很短而請求的數目卻是巨大的。

構建服務器應用程序的一個簡單模型是:每當一個請求到達就創建一個新線程,然後在新線程中爲請求服務。實際上對於原型開發這種方法工作得很好,但如果試圖部署以這種方式運行的服務器應用程序,那麼這種方法的嚴重不足就很明顯。每個請求對應一個線程(thread-per-request)方法的不足之一是:爲每個請求創建一個新線程的開銷很大;爲每個請求創建新線程的服務器在創建和銷燬線程上花費的時間和消耗的系統資源要比花在處理實際的用戶請求的時間和資源更多。

除了創建和銷燬線程的開銷之外,活動的線程也消耗系統資源。在一個 JVM 裏創建太多的線程可能會導致系統由於過度消耗內存而用完內存或“切換過度”。爲了防止資源不足,服務器應用程序需要一些辦法來限制任何給定時刻處理的請求數目。

線程池爲線程生命週期開銷問題和資源不足問題提供瞭解決方案。通過對多個任務重用線程,線程創建的開銷被分攤到了多個任務上。其好處是,因爲在請求到達時線程已經存在,所以無意中也消除了線程創建所帶來的延遲。這樣,就可以立即爲請求服務,使應用程序響應更快。而且,通過適當地調整線程池中的線程數目,也就是當請求的數目超過某個閾值時,就強制其它任何新到的請求一直等待,直到獲得一個線程來處理爲止,從而可以防止資源不足。

2. 使用線程池的風險

雖然線程池是構建多線程應用程序的強大機制,但使用它並不是沒有風險的。用線程池構建的應用程序容易遭受任何其它多線程應用程序容易遭受的所有併發風險,諸如同步錯誤和死鎖,它還容易遭受特定於線程池的少數其它風險,諸如與池有關的死鎖、資源不足和線程泄漏。

2.1 死鎖

任何多線程應用程序都有死鎖風險。當一組進程或線程中的每一個都在等待一個只有該組中另一個進程才能引起的事件時,我們就說這組進程或線程 死鎖了。死鎖的最簡單情形是:線程 A 持有對象 X 的獨佔鎖,並且在等待對象 Y 的鎖,而線程 B 持有對象 Y 的獨佔鎖,卻在等待對象 X 的鎖。除非有某種方法來打破對鎖的等待(Java 鎖定不支持這種方法),否則死鎖的線程將永遠等下去。

雖然任何多線程程序中都有死鎖的風險,但線程池卻引入了另一種死鎖可能,在那種情況下,所有池線程都在執行已阻塞的等待隊列中另一任務的執行結果的任務,但這一任務卻因爲沒有未被佔用的線程而不能運行。當線程池被用來實現涉及許多交互對象的模擬,被模擬的對象可以相互發送查詢,這些查詢接下來作爲排隊的任務執行,查詢對象又同步等待着響應時,會發生這種情況。

2.2 資源不足

線程池的一個優點在於:相對於其它替代調度機制(有些我們已經討論過)而言,它們通常執行得很好。但只有恰當地調整了線程池大小時纔是這樣的。線程消耗包括內存和其它系統資源在內的大量資源。除了 Thread 對象所需的內存之外,每個線程都需要兩個可能很大的執行調用堆棧。除此以外,JVM 可能會爲每個 Java 線程創建一個本機線程,這些本機線程將消耗額外的系統資源。最後,雖然線程之間切換的調度開銷很小,但如果有很多線程,環境切換也可能嚴重地影響程序的性能。

如果線程池太大,那麼被那些線程消耗的資源可能嚴重地影響系統性能。在線程之間進行切換將會浪費時間,而且使用超出比您實際需要的線程可能會引起資源匱乏問題,因爲池線程正在消耗一些資源,而這些資源可能會被其它任務更有效地利用。除了線程自身所使用的資源以外,服務請求時所做的工作可能需要其它資源,例如 JDBC 連接、套接字或文件。這些也都是有限資源,有太多的併發請求也可能引起失效,例如不能分配 JDBC 連接。

2.3 併發錯誤

線程池和其它排隊機制依靠使用 wait() 和 notify() 方法,這兩個方法都難於使用。如果編碼不正確,那麼可能丟失通知,導致線程保持空閒狀態,儘管隊列中有工作要處理。使用這些方法時,必須格外小心。而最好使用現有的、已經知道能工作的實現,例如 util.concurrent 包。

2.4 線程泄漏

各種類型的線程池中一個嚴重的風險是線程泄漏,當從池中除去一個線程以執行一項任務,而在任務完成後該線程卻沒有返回池時,會發生這種情況。發生線程泄漏的一種情形出現在任務拋出一個 RuntimeException 或一個 Error 時。如果池類沒有捕捉到它們,那麼線程只會退出而線程池的大小將會永久減少一個。當這種情況發生的次數足夠多時,線程池最終就爲空,而且系統將停止,因爲沒有可用的線程來處理任務。

有些任務可能會永遠等待某些資源或來自用戶的輸入,而這些資源又不能保證變得可用,用戶可能也已經回家了,諸如此類的任務會永久停止,而這些停止的任務也會引起和線程泄漏同樣的問題。如果某個線程被這樣一個任務永久地消耗着,那麼它實際上就被從池除去了。對於這樣的任務,應該要麼只給予它們自己的線程,要麼只讓它們等待有限的時間。

2.5 請求過載

僅僅是請求就壓垮了服務器,這種情況是可能的。在這種情形下,我們可能不想將每個到來的請求都排隊到我們的工作隊列,因爲排在隊列中等待執行的任務可能會消耗太多的系統資源並引起資源缺乏。在這種情形下決定如何做取決於您自己;在某些情況下,您可以簡單地拋棄請求,依靠更高級別的協議稍後重試請求,您也可以用一個指出服務器暫時很忙的響應來拒絕請求。

3. 有效使用線程池的準則

只要您遵循幾條簡單的準則,線程池可以成爲構建服務器應用程序的極其有效的方法:

不要對那些同步等待其它任務結果的任務排隊。這可能會導致上面所描述的那種形式的死鎖,在那種死鎖中,所有線程都被一些任務所佔用,這些任務依次等待排隊任務的結果,而這些任務又無法執行,因爲所有的線程都很忙。

在爲時間可能很長的操作使用合用的線程時要小心。如果程序必須等待諸如 I/O 完成這樣的某個資源,那麼請指定最長的等待時間,以及隨後是失效還是將任務重新排隊以便稍後執行。這樣做保證了:通過將某個線程釋放給某個可能成功完成的任務,從而將最終取得某些進展。

理解任務。要有效地調整線程池大小,您需要理解正在排隊的任務以及它們正在做什麼。它們是 CPU 限制的(CPU-bound)嗎?它們是 I/O 限制的(I/O-bound)嗎?您的答案將影響您如何調整應用程序。如果您有不同的任務類,這些類有着截然不同的特徵,那麼爲不同任務類設置多個工作隊列可能會有意義,這樣可以相應地調整每個池。

4. 線程池的大小設置

調整線程池的大小基本上就是避免兩類錯誤:線程太少或線程太多。幸運的是,對於大多數應用程序來說,太多和太少之間的餘地相當寬。

請回憶:在應用程序中使用線程有兩個主要優點,儘管在等待諸如 I/O 的慢操作,但允許繼續進行處理,並且可以利用多處理器。在運行於具有 N 個處理器機器上的計算限制的應用程序中,在線程數目接近 N 時添加額外的線程可能會改善總處理能力,而在線程數目超過 N 時添加額外的線程將不起作用。事實上,太多的線程甚至會降低性能,因爲它會導致額外的環境切換開銷。

線程池的最佳大小取決於可用處理器的數目以及工作隊列中的任務的性質。若在一個具有 N 個處理器的系統上只有一個工作隊列,其中全部是計算性質的任務,在線程池具有 N 或 N+1 個線程時一般會獲得最大的 CPU 利用率。

對於那些可能需要等待 I/O 完成的任務(例如,從套接字讀取 HTTP 請求的任務),需要讓池的大小超過可用處理器的數目,因爲並不是所有線程都一直在工作。通過使用概要分析,您可以估計某個典型請求的等待時間(WT)與服務時間(ST)之間的比例。如果我們將這一比例稱之爲 WT/ST,那麼對於一個具有 N 個處理器的系統,需要設置大約 N*(1+WT/ST) 個線程來保持處理器得到充分利用。

處理器利用率不是調整線程池大小過程中的唯一考慮事項。隨着線程池的增長,您可能會碰到調度程序、可用內存方面的限制,或者其它系統資源方面的限制,例如套接字、打開的文件句柄或數據庫連接等的數目。

5. 常用的幾種線程池

5.1 newCachedThreadPool

創建一個可緩存線程池,如果線程池長度超過處理需要,可靈活回收空閒線程,若無可回收,則新建線程。

這種類型的線程池特點是:

  • 工作線程的創建數量幾乎沒有限制(其實也有限制的,數目爲Interger. MAX_VALUE), 這樣可靈活的往線程池中添加線程。
  • 如果長時間沒有往線程池中提交任務,即如果工作線程空閒了指定的時間(默認爲1分鐘),則該工作線程將自動終止。終止後,如果你又提交了新的任務,則線程池重新創建一個工作線程。
  • 在使用CachedThreadPool時,一定要注意控制任務的數量,否則,由於大量線程同時運行,很有會造成系統癱瘓。

示例代碼如下:

package test;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class ThreadPoolExecutorTest {
 public static void main(String[] args) {
  ExecutorService cachedThreadPool = Executors.newCachedThreadPool();
  for (int i = 0; i < 10; i++) {
   final int index = i;
   try {
    Thread.sleep(index * 1000);
   } catch (InterruptedException e) {
    e.printStackTrace();
   }
   cachedThreadPool.execute(new Runnable() {
    public void run() {
     System.out.println(index);
    }
   });
  }
 }
}

5.2 newFixedThreadPool

創建一個指定工作線程數量的線程池。每當提交一個任務就創建一個工作線程,如果工作線程數量達到線程池初始的最大數,則將提交的任務存入到池隊列中。

FixedThreadPool是一個典型且優秀的線程池,它具有線程池提高程序效率和節省創建線程時所耗的開銷的優點。但是,在線程池空閒時,即線程池中沒有可運行任務時,它不會釋放工作線程,還會佔用一定的系統資源。

示例代碼如下:

package test;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class ThreadPoolExecutorTest {
 public static void main(String[] args) {
  ExecutorService fixedThreadPool = Executors.newFixedThreadPool(3);
  for (int i = 0; i < 10; i++) {
   final int index = i;
   fixedThreadPool.execute(new Runnable() {
    public void run() {
     try {
      System.out.println(index);
      Thread.sleep(2000);
     } catch (InterruptedException e) {
      e.printStackTrace();
     }
    }
   });
  }
 }
}  
//因爲線程池大小爲3,每個任務輸出index後sleep 2秒,所以每兩秒打印3個數字。定長線程池的大小最好
//根據系統資源進行設置如Runtime.getRuntime().availableProcessors()。

5.3 newSingleThreadExecutor

創建一個單線程化的Executor,即只創建唯一的工作者線程來執行任務,它只會用唯一的工作線程來執行任務,保證所有任務按照指定順序(FIFO, LIFO, 優先級)執行。如果這個線程異常結束,會有另一個取代它,保證順序執行。單工作線程最大的特點是可保證順序地執行各個任務,並且在任意給定的時間不會有多個線程是活動的。

示例代碼如下:

package test;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class ThreadPoolExecutorTest {
 public static void main(String[] args) {
  ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor();
  for (int i = 0; i < 10; i++) {
   final int index = i;
   singleThreadExecutor.execute(new Runnable() {
    public void run() {
     try {
      System.out.println(index);
      Thread.sleep(2000);
     } catch (InterruptedException e) {
      e.printStackTrace();
     }
    }
   });
  }
 }
}

5.4 newScheduleThreadPool

創建一個定長的線程池,而且支持定時的以及週期性的任務執行,支持定時及週期性任務執行。

延遲3秒執行,延遲執行示例代碼如下:

package test;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
public class ThreadPoolExecutorTest {
 public static void main(String[] args) {
  ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(5);
  scheduledThreadPool.schedule(new Runnable() {
   public void run() {
    System.out.println("delay 3 seconds");
   }
  }, 3, TimeUnit.SECONDS);
 }
}

表示延遲1秒後每3秒執行一次,定期執行示例代碼如下:

package test;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
public class ThreadPoolExecutorTest {
 public static void main(String[] args) {
  ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(5);
  scheduledThreadPool.scheduleAtFixedRate(new Runnable() {
   public void run() {
    System.out.println("delay 1 seconds, and excute every 3 seconds");
   }
  }, 1, 3, TimeUnit.SECONDS);
 }
}

6.線程池的組成

一般的線程池主要分爲以下 4 個組成部分:
1. 線程池管理器:用於創建並管理線程池
2. 工作線程:線程池中的線程
3. 任務接口:每個任務必須實現的接口,用於工作線程調度其運行
4. 任務隊列:用於存放待處理的任務,提供一種緩衝機制

Java 中的線程池是通過 Executor 框架實現的,該框架中用到了 Executor,Executors,ExecutorService,ThreadPoolExecutor ,Callable 和 Future、FutureTask 這幾個類。

ThreadPoolExecutor 的構造方法如下:

public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), defaultHandler);
    }

1. corePoolSize:指定了線程池中的線程數量。
2. maximumPoolSize:指定了線程池中的最大線程數量。
3. keepAliveTime:當前線程池數量超過 corePoolSize 時,多餘的空閒線程的存活時間,即多次時間內會被銷燬。
4. unit:keepAliveTime 的單位。
5. workQueue:任務隊列,被提交但尚未被執行的任務。
6. threadFactory:線程工廠,用於創建線程,一般用默認的即可。
7. handler:拒絕策略,當任務太多來不及處理,如何拒絕任務。

7.拒絕策略

線程池中的線程已經用完了,無法繼續爲新任務服務,同時,等待隊列也已經排滿了,再也塞不下新任務了。這時候我們就需要拒絕策略機制合理的處理這個問題。
JDK 內置的拒絕策略如下:
1. AbortPolicy : 直接拋出異常,阻止系統正常運行。
2. CallerRunsPolicy : 只要線程池未關閉,該策略直接在調用者線程中,運行當前被丟棄的任務。顯然這樣做不會真的丟棄任務,但是,任務提交線程的性能極有可能會急劇下降。
3. DiscardOldestPolicy : 丟棄最老的一個請求,也就是即將被執行的一個任務,並嘗試再次提交當前任務。
4. DiscardPolicy : 該策略默默地丟棄無法處理的任務,不予任何處理。如果允許任務丟失,這是最好的一種方案。
以上內置拒絕策略均實現了 RejectedExecutionHandler 接口,若以上策略仍無法滿足實際需要,完全可以自己擴展 RejectedExecutionHandler 接口。

8.Java 線程池工作過程

1. 線程池剛創建時,裏面沒有一個線程。任務隊列是作爲參數傳進來的。不過,就算隊列裏面有任務,線程池也不會馬上執行它們。
2. 當調用 execute() 方法添加一個任務時,線程池會做如下判斷:

  • a) 如果正在運行的線程數量小於 corePoolSize,那麼馬上創建線程運行這個任務;
  • b) 如果正在運行的線程數量大於或等於 corePoolSize,那麼將這個任務放入隊列;
  • c) 如果這時候隊列滿了,而且正在運行的線程數量小於 maximumPoolSize,那麼還是要創建非核心線程立刻運行這個任務;
  • d) 如果隊列滿了,而且正在運行的線程數量等於 maximumPoolSize,那麼線程池會拋出異常 RejectExecutionException。

3. 當一個線程完成任務時,它會從隊列中取下一個任務來執行。
4. 當一個線程無事可做,超過一定的時間(keepAliveTime)時,線程池會判斷,如果當前運行的線程數大於 corePoolSize,那麼這個線程就被停掉。所以線程池的所有任務完成後,它最終會收縮到 corePoolSize 的大小。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章