使用CubeMX配置STM32的外設

使用CubeMX配置STM32的外設, 在板級文件中一般都可以使用CubeMX直接配置外設,並可以使用
不需要再手動配置寄存器
打開下面的配置文件
在這裏插入圖片描述

配置時鐘

在這裏插入圖片描述

配置UART

在這裏插入圖片描述

配置FSMC

在這裏插入圖片描述

對應文件

配置後會更新對應的三個文件和其對應的.h文件
在這裏插入圖片描述

系統時鐘的函數

例如配置完時鐘後,會再main.c中添加一個函數,這個是系統時鐘的配置。相當於把手寫的工作給自動話。由於再main.c中,你如果有自己的main文件,那麼就要把這個函數複製到你能調用到的地方。
例如:使用RT-Thread系統的話就複製到board.c中去

void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /**Configure the main internal regulator output voltage 
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  /**Initializes the CPU, AHB and APB busses clocks 
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 4;
  RCC_OscInitStruct.PLL.PLLN = 168;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /**Initializes the CPU, AHB and APB busses clocks 
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }
}

UART的函數

配置uart1的話,會在stm32f4xx_hal_msp.c中生存相關的GPIO配置。

void HAL_UART_MspInit(UART_HandleTypeDef* huart)
{

  GPIO_InitTypeDef GPIO_InitStruct = {0};
  if(huart->Instance==USART1)
  {
  /* USER CODE BEGIN USART1_MspInit 0 */

  /* USER CODE END USART1_MspInit 0 */
    /* Peripheral clock enable */
    __HAL_RCC_USART1_CLK_ENABLE();
  
    __HAL_RCC_GPIOA_CLK_ENABLE();
    /**USART1 GPIO Configuration    
    PA9     ------> USART1_TX
    PA10     ------> USART1_RX 
    */
    GPIO_InitStruct.Pin = GPIO_PIN_9|GPIO_PIN_10;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_PULLUP;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
    GPIO_InitStruct.Alternate = GPIO_AF7_USART1;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

    /* USART1 interrupt Init */
    HAL_NVIC_SetPriority(USART1_IRQn, 0, 0);
    HAL_NVIC_EnableIRQ(USART1_IRQn);
  /* USER CODE BEGIN USART1_MspInit 1 */

  /* USER CODE END USART1_MspInit 1 */
  }

}

在main.c中也生成了函數, 也可以不使用main的函數,選擇寫其他方式來調用底層的HAL庫,來實現。RT-thread就沒有使用這裏的初始化

static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

FSMC的函數

FSMC也同樣生成了兩個函數
stm32f4xx_hal_msp.c

static void HAL_FSMC_MspInit(void){
  /* USER CODE BEGIN FSMC_MspInit 0 */

  /* USER CODE END FSMC_MspInit 0 */
  GPIO_InitTypeDef GPIO_InitStruct;
  if (FSMC_Initialized) {
    return;
  }
  FSMC_Initialized = 1;
  /* Peripheral clock enable */
  __HAL_RCC_FSMC_CLK_ENABLE();
  
  /** FSMC GPIO Configuration  
  PF12   ------> FSMC_A6
  PE7   ------> FSMC_D4
  PE8   ------> FSMC_D5
  PE9   ------> FSMC_D6
  PE10   ------> FSMC_D7
  PE11   ------> FSMC_D8
  PE12   ------> FSMC_D9
  PE13   ------> FSMC_D10
  PE14   ------> FSMC_D11
  PE15   ------> FSMC_D12
  PD8   ------> FSMC_D13
  PD9   ------> FSMC_D14
  PD10   ------> FSMC_D15
  PD14   ------> FSMC_D0
  PD15   ------> FSMC_D1
  PD0   ------> FSMC_D2
  PD1   ------> FSMC_D3
  PD4   ------> FSMC_NOE
  PD5   ------> FSMC_NWE
  PG12   ------> FSMC_NE4
  */
  GPIO_InitStruct.Pin = GPIO_PIN_12;
  GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  GPIO_InitStruct.Alternate = GPIO_AF12_FSMC;
  HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);

  GPIO_InitStruct.Pin = GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10 
                          |GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14 
                          |GPIO_PIN_15;
  GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  GPIO_InitStruct.Alternate = GPIO_AF12_FSMC;
  HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);

  GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_14 
                          |GPIO_PIN_15|GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_4 
                          |GPIO_PIN_5;
  GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  GPIO_InitStruct.Alternate = GPIO_AF12_FSMC;
  HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);

  GPIO_InitStruct.Pin = GPIO_PIN_12;
  GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  GPIO_InitStruct.Alternate = GPIO_AF12_FSMC;
  HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);

  /* USER CODE BEGIN FSMC_MspInit 1 */

  /* USER CODE END FSMC_MspInit 1 */
}

main.c

/* FSMC initialization function */
static void MX_FSMC_Init(void)
{
  FSMC_NORSRAM_TimingTypeDef Timing;
  FSMC_NORSRAM_TimingTypeDef ExtTiming;

  /** Perform the SRAM1 memory initialization sequence
  */
  hsram1.Instance = FSMC_NORSRAM_DEVICE;
  hsram1.Extended = FSMC_NORSRAM_EXTENDED_DEVICE;
  /* hsram1.Init */
  hsram1.Init.NSBank = FSMC_NORSRAM_BANK4;
  hsram1.Init.DataAddressMux = FSMC_DATA_ADDRESS_MUX_DISABLE;
  hsram1.Init.MemoryType = FSMC_MEMORY_TYPE_SRAM;
  hsram1.Init.MemoryDataWidth = FSMC_NORSRAM_MEM_BUS_WIDTH_16;
  hsram1.Init.BurstAccessMode = FSMC_BURST_ACCESS_MODE_DISABLE;
  hsram1.Init.WaitSignalPolarity = FSMC_WAIT_SIGNAL_POLARITY_LOW;
  hsram1.Init.WrapMode = FSMC_WRAP_MODE_DISABLE;
  hsram1.Init.WaitSignalActive = FSMC_WAIT_TIMING_BEFORE_WS;
  hsram1.Init.WriteOperation = FSMC_WRITE_OPERATION_ENABLE;
  hsram1.Init.WaitSignal = FSMC_WAIT_SIGNAL_DISABLE;
  hsram1.Init.ExtendedMode = FSMC_EXTENDED_MODE_ENABLE;
  hsram1.Init.AsynchronousWait = FSMC_ASYNCHRONOUS_WAIT_DISABLE;
  hsram1.Init.WriteBurst = FSMC_WRITE_BURST_DISABLE;
  hsram1.Init.PageSize = FSMC_PAGE_SIZE_NONE;
  /* Timing */
  Timing.AddressSetupTime = 15;
  Timing.AddressHoldTime = 15;
  Timing.DataSetupTime = 24;
  Timing.BusTurnAroundDuration = 0;
  Timing.CLKDivision = 16;
  Timing.DataLatency = 17;
  Timing.AccessMode = FSMC_ACCESS_MODE_A;
  /* ExtTiming */
  ExtTiming.AddressSetupTime = 8;
  ExtTiming.AddressHoldTime = 15;
  ExtTiming.DataSetupTime = 8;
  ExtTiming.BusTurnAroundDuration = 0;
  ExtTiming.CLKDivision = 16;
  ExtTiming.DataLatency = 17;
  ExtTiming.AccessMode = FSMC_ACCESS_MODE_A;

  if (HAL_SRAM_Init(&hsram1, &Timing, &ExtTiming) != HAL_OK)
  {
    Error_Handler( );
  }

}

由於並沒有使用這裏的main,所以上面的main.c裏面函數需要複製出來放到自己的main文件中才能使用

總結:CubeMX會向三個文件中寫函數

  • stm32f4xx_hal_msp.c 會放外設對應GPIO接口的初始化配置函數
  • main.c 會放外設對應的初始化函數。要使用的話,需要複製到其他位置
  • stm32f4xx_it.c 會放中斷例程函數的使用
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章