【学术】重构具有时间延迟相互作用的动力学网络

Reconstruction of dynamic networks with time-delayed interactions in presence of fast-varying noises

Zhaoyang Zhang Yang Chen Yuanyuan Mi Gang Hu
Ningbo University 中科院脑网中心和国家模式识别实验室 Chongqing University Beijing Normal University

Dated: April 1, 2019

理论推导

考虑NN个节点的动力学系统
x˙i=Fi[xi(t)]+j=1,jiNΦij[xi(t),xj(tτij)]+ηi(t)+Γi(t),i=1,2,...,N\dot{x}_i=F_i[x_i(t)]+\sum_{j=1,j\neq i}^N\Phi_{ij}[x_i(t),x_j(t-\tau_{ij})]+\eta_i(t)+\Gamma_i(t),i=1,2,...,N

其中ηi(t)\eta_i(t)为色噪声,Γi(t)\Gamma_i(t)为白噪声,满足
<ηi(t)>=0,<ηi(t)ηi(t+t)>=PijetτC<\eta_i(t)>=0,<\eta_i(t)\eta_i(t+t')>=P_{ij}e^{-\frac{|t'|}{\tau_C}}

<Γi(t)>=0,<Γi(t)Γi(t+t)>=Qiδijδ(t)<\Gamma_i(t)>=0,<\Gamma_i(t)\Gamma_i(t+t')>=Q_i\delta_{ij}\delta(t')

<Γi(t)ηj(t)>=0<\Gamma_i(t)\eta_j(t)>=0

FiF_iΦij\Phi_{ij}可以为线性或者非线性。需要设计算法,从数据中重构出网络连接。假设在整个网络中我们只能够测量两个节点AABB,并且有充足的数据。
xA(t)=[xA(t1),xA(t2)....,xA(tk),...,xA(tL)]x_A(t)=[x_A(t_1),x_A(t_2)....,x_A(t_k),...,x_A(t_L)]

xB(t)=[xBt1),xB(t2)....,xB(tk),...,xB(tL)]x_B(t)=[x_Bt_1),x_B(t_2)....,x_B(t_k),...,x_B(t_L)]

0<Δt=tk+1tk1,L10<\Delta t=t_{k+1}-t_k\ll 1,L\gg 1

xi(t)x_i(t)求时间的二阶段导可得
x¨i(t)=Fi[xi(t)]xi(t)x˙i(t)+j=1,jiNΦij[xi(t),xj(tτij)]xi(t)x˙i(t)+j=1,jiNΦij[xi(t),xj(tτij)]xj(tτij)x˙j(tτij)+η˙i(t)+Γ˙i(t)\ddot{x}_i(t)=\frac{\partial F_i[x_i(t)]}{\partial x_i(t)}\dot{x}_i(t)+\sum_{j=1,j\neq i}^N\frac{\partial\Phi_{ij}[x_i(t),x_j(t-\tau_{ij})]}{\partial x_i(t)}\dot{x}_i(t)+\sum_{j=1,j\neq i}^N\frac{\partial\Phi_{ij}[x_i(t),x_j(t-\tau_{ij})]}{\partial x_j(t-\tau_{ij})}\dot{x}_j(t-\tau_{ij})+\dot{\eta}_i(t)+\dot{\Gamma}_i(t)

其中高阶导数可以使用前向差分进行计算
x˙i(tk)=xi(tk+1)xi(tk)Δt,x¨i(tk)=x˙i(tk+1)x˙i(tk)Δt\dot{x}_i(t_k)=\frac{x_i(t_{k+1})-x_i(t_{k})}{\Delta t},\ddot{x}_i(t_k)=\frac{\dot{x}_i(t_{k+1})-\dot{x}_i(t_{k})}{\Delta t}

噪声的导数被定义为
η˙i(tk)=ηi(tk+1)ηi(tk)Δt,Γ˙i(tk)=Γi(tk+1)Γi(tk)Δt\dot{\eta}_i(t_k)=\frac{\eta_i(t_{k+1})-\eta_i(t_{k})}{\Delta t},\dot{\Gamma}_i(t_k)=\frac{\Gamma_i(t_{k+1})-\Gamma_i(t_{k})}{\Delta t}

根据前面的公式可知
x¨A(tk)=12FA[xA(tk)]xi(tk)[x˙A(tk)+x˙A(tk+1)]+12j=1,jANΦAj[xA(t),xj(tkτAj)]xA(tk)[x˙A(tk)+x˙A(tk+1)]+12j=1,jANΦAj[xi(t),xj(tτAj)]xj(tτAj)[x˙j(tkτAj)+x˙j(tk+1)]+ηA(tk+1τAj)ηA(tk)Δt+ΓA(tk+1)ΓA(tk)Δt\ddot{x}_A(t_k)=\frac{1}{2}\frac{\partial F_A[x_A(t_k)]}{\partial x_i(t_k)}[\dot{x}_A(t_k) +\dot{x}_A(t_{k+1})]+\frac{1}{2}\sum_{j=1,j\neq A}^N\frac{\partial\Phi_{Aj}[x_A(t),x_j(t_k-\tau_{Aj})]}{\partial x_A(t_k)}[\dot{x}_A(t_k)+\dot{x}_A(t_{k+1})] +\frac{1}{2}\sum_{j=1,j\neq A}^N\frac{\partial\Phi_{Aj}[x_i(t),x_j(t-\tau_{Aj})]}{\partial x_j(t-\tau_{Aj})}[\dot{x}_j(t_k-\tau_{Aj})+\dot{x}_j(t_{k+1})] +\frac{\eta_A(t_{k+1-\tau_{Aj}})-\eta_A(t_{k})}{\Delta t} +\frac{\Gamma_A(t_{k+1})-\Gamma_A(t_{k})}{\Delta t}

然后对方程左右两边同乘xB(tk+Δt)x_B(t_k+\Delta t),计算每项的关联可得
RAB=<x¨A(tk)xB(tk+Δt)>R_{AB}=<\ddot{x}_A(t_k)x_B(t_k+\Delta t)>

=<12FA[xA(tk)]xi(tk)[x˙A(tk)xB(tk+Δt)+x˙A(tk+1xB(tk+Δt))]>=<\frac{1}{2}\frac{\partial F_A[x_A(t_k)]}{\partial x_i(t_k)}[\dot{x}_A(t_k)x_B(t_k+\Delta t)+\dot{x}_A(t_{k+1}x_B(t_k+\Delta t))]>

+12j=1,jANΦAj[xA(t),xj(tkτAj)]xA(tk)[x˙A(tk)xB(tk+Δt)+x˙A(tk+1)xB(tk+Δt)]+\frac{1}{2}\sum_{j=1,j\neq A}^N\frac{\partial\Phi_{Aj}[x_A(t),x_j(t_k-\tau_{Aj})]}{\partial x_A(t_k)}[\dot{x}_A(t_k)x_B(t_k+\Delta t)+\dot{x}_A(t_{k+1})x_B(t_k+\Delta t)]

+12j=1,jANΦAj[xi(t),xj(tτAj)]xj(tτAj)[x˙j(tkτAj)xB(tk+Δt))+x˙j(tk+1)xB(tk+Δt))]+\frac{1}{2}\sum_{j=1,j\neq A}^N\frac{\partial\Phi_{Aj}[x_i(t),x_j(t-\tau_{Aj})]}{\partial x_j(t-\tau_{Aj})}[\dot{x}_j(t_k-\tau_{Aj})x_B(t_k+\Delta t))+\dot{x}_j(t_{k+1})x_B(t_k+\Delta t))]

+ηA(tk+1τAj)xB(tk+Δt)ηA(tk)xB(tk+Δt)Δt+ΓA(tk+1)xB(tk+Δt)ΓA(tk)xB(tk+Δt)Δt+\frac{\eta_A(t_{k+1-\tau_{Aj}})x_B(t_k+\Delta t)-\eta_A(t_{k})x_B(t_k+\Delta t)}{\Delta t}+\frac{\Gamma_A(t_{k+1})x_B(t_k+\Delta t)-\Gamma_A(t_{k})x_B(t_k+\Delta t)}{\Delta t}

记该公式为方程1。因为有白噪声的存在,对<x˙i(t)x˙j(t+t)><\dot{x}_i(t)\dot{x}_j(t+t')>积分在t=0t'=0处有个阶跃,所以
<x˙i(t)xj(t+Δt)><x˙i(t)xj(t)>=Qjδij<\dot{x}_i(t)x_j(t+\Delta t)>-<\dot{x}_i(t)x_j(t)>=Q_j\delta_{ij}

定义nAB=τABΔtn_{AB}=\frac{\tau_{AB}}{\Delta t}Vi(Δk)=<x˙i(tk)xi(tk+Δk)>V_i(\Delta k)=<\dot{x}_i(t_k)x_i(t_{k+\Delta k})>,在Δk=0\Delta k=0Δk=1\Delta k=1处有
Vi(1)Vi(0)=QiV_i(1)-V_i(0)=Q_i

由于<x˙B(tkτAB)xB(tk+Δk)><\dot{x}_B(t_k-\tau_{AB})x_B(t_{k+\Delta k})><x˙B(tk+1τAB)xB(tk+Δk)><\dot{x}_B(t_{k+1}-\tau_{AB})x_B(t_{k+\Delta k})>k=nABk=-n_{AB}处不联系,可以得到nABn_{AB}τAB\tau_{AB}
根据<x˙i(t)xj(t+Δt)><x˙i(t)xj(t)>=Qjδij<\dot{x}_i(t)x_j(t+\Delta t)>-<\dot{x}_i(t)x_j(t)>=Q_j\delta_{ij}的性质可知方程1右边除了<x˙B(tkτAB)xB(tk+Δk)><\dot{x}_B(t_k-\tau_{AB})x_B(t_{k+\Delta k})><x˙B(tk+1τAB)xB(tk+Δk)><\dot{x}_B(t_{k+1}-\tau_{AB})x_B(t_{k+\Delta k})>没有不连续的项,所以从方程1可以得到
DAB=RAB(nAB+2)RAB(nAB)=<x¨A(tk)xB(ttknAB+2)><x¨A(tk)xB(ttknAB)>D_{AB}=R_{AB}(-n_{AB}+2)-R_{AB}(-n_{AB})=<\ddot{x}_A(t_k)x_B(t_{t_k-n_{AB}+2})>-<\ddot{x}_A(t_k)x_B(t_{t_k-n_{AB}})>

=<ΦAj[xi(t),xj(tτAj)]xB(tτAB)>QB=<\frac{\partial\Phi_{Aj}[x_i(t),x_j(t-\tau_{Aj})]}{\partial x_B(t-\tau_{AB})}>Q_B

定义MAB=<ΦAj[xi(t),xj(tτAj)]xB(tτAB)>M_{AB}=<\frac{\partial\Phi_{Aj}[x_i(t),x_j(t-\tau_{Aj})]}{\partial x_B(t-\tau_{AB})}>,可得
MAB=DABQB=JABM_{AB}=\frac{D_{AB}}{Q_B}=J_{AB}

数值仿真

定义均方根误差EE作为衡量MABM_{AB}JABJ_{AB}之间的误差,TT表示测量时长
对于线性系统:
在这里插入图片描述
对于扩散耦合的FHN网络(上),和Rossler网络(下)
在这里插入图片描述
对于基因调控网络
在这里插入图片描述

总结

文章的核心亮点是重构有时滞作用的系统,trick是利用白噪声的性质。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章