Coursera Deep Learning笔记 逻辑回归典型的训练过程(复习笔记)

Deep Learning 用逻辑回归训练图片的典型步骤.

笔记摘自:https://xienaoban.github.io/posts/59595.html

1. 处理数据

1.1 向量化(Vectorization)

将每张图片的高和宽和RGB展为向量,最终X的shape为 (height*width*3, m) .

1.2 特征归一化(Normalization)

对于一般数据,使用标准化(Standardization)

  • \(X_{scale} = \frac{(X(axis=0) - X.mean(axis=0))}{X.std(axis=0)}​\)
  • z_i = (x_i - mean) / delta , meandelta 代表X的均值和标准差. 最终特征处于[-1, 1]区间.

对于图片, 可直接使用Min-Max Scaling

  • 即将每个特征除以255(每个像素分为R, G, B, 范围在0~255)使得值处于[0, 1].

2. 初始化参数

一般将 wb 随机选择.

3. 梯度下降(Gradient descent)

根据 w , b 和训练集,来训练数据.

  • 需要设定 迭代次数学习率 .

以下为大循环(迭代次数)中内容:

3.1 计算代价函数

对于\(x^{(i)} \in X\), 有

\[z^{(i)} = w^Tx^{(i)} + b \]

\[ a^{(i)} = \hat{y}^{(i)} = sigmod(z^{(i)}) = \sigma(z^{(i)}) = \frac{1}{1 + e^{-z^{(i)}}} \]

\[损失函数: {L}(a^{(i)}, y^{(i)}) = {L}(\hat{y}^{(i)}, y^{(i)}) = - y^{(i)} \log(a^{(i)}) - (1-y^{(i)} ) \log(1-a^{(i)}) \]

\[A = (a^{(1)}, a^{(2)}, ... , a^{(m-1)}, a^{(m)}) = \sigma(w^TX+b) = \frac{1}{1+e^{-(w^TX+b)}} \]

\[代价函数: J(w,b) = -\frac{1}{m} \sum^{m}_{i=1} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum^{m}_{i=1} (y^{(i)} log(\hat{y}^{(i)}) + (1-y^{(i)}) log(1-\hat{y}^{(i)})) \]
# 激活函数
A = sigmoid(w.T.dot(X) + b)
# 代价函数
cost = -np.sum(Y * np.log(A) + (1-Y) * np.log(1 - A)) / m

3.2 计算反向传播的梯度

即:对 \(J = -\dfrac{1}{m} \sum L(a, y)\) 计算导数,即对\({L}(a, y)\) 计算导数,以下求导,均省略上标。

求:\(\dfrac{\partial J}{\partial w}\) 和 $\dfrac{\partial J}{\partial b} $ (dw 和 db)

\[\dfrac{\partial L}{\partial a} = \dfrac{\partial L(a, y)}{\partial a} = -\frac{y}{a} + \frac{1-y}{1-a} \]

\[\dfrac{da}{dz} = (\frac{1}{1 + e^{-z}})' = \dfrac{e^{-z}}{(1+e^{-z})^2} = \dfrac{1}{1+e^{-z}} - \dfrac{1}{(1+e^{-z})^2} = a-a^2 = a · (1-a) \]

\[\dfrac{\partial L}{\partial z} = \dfrac{\partial L}{\partial a} \dfrac{da}{dz} = (-\dfrac{y}{a} + \dfrac{1-y}{1-a}) · a · (1-a) = a - y \]

\[\dfrac{\partial L}{\partial w} = \dfrac{\partial L}{\partial z} \dfrac{\partial z}{\partial w} = (a-y) · x \]

\[\dfrac{\partial L}{\partial b} = \dfrac{\partial L}{\partial z} \dfrac{\partial z}{\partial b} = a-y \]

根据 \(J = -\dfrac{1}{m} \sum L(a, y)​\) 最终可得:

\[\dfrac{\partial J}{\partial w} = \dfrac{\partial J}{\partial a} \dfrac{\partial a}{\partial w} = \dfrac{1}{m} X(A-Y)^T \]

\[\dfrac{\partial J}{\partial b} = \dfrac{1}{m} \sum^{m}_{i=1} (a^{(i)} - y^{(i)}) \]
dw = X.dot((A - Y).T) / m
db = np.sum(A - Y) / m

3.3 更新 w , b

w = w - learning_rate * dw
b = b - learning_rate * db

4. 预测测试集

  • 使用训练出来的 w , b , 对测试集使用 y_pred = sigmoid(wx+b) , 计算得预测的概率

  • 对其取整, 例如大于0.7则判定为 '是', 否则为'否'.

5. 实例:实现一个图像识别算法

https://www.cnblogs.com/douzujun/p/10267165.html

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章