Android Handler HandlerThread使用和源碼解析

簡介

Android開發中對Handler、HandlerThread可以說是耳熟爲詳了.

看到HandlerThread很快就會聯想到Handler。Handler在Android中一般都用於在UI主線程中執行,因此在Handler接收消息後,處理消息時,不能做一些很耗時的操作,否則將出現ANR錯誤。

Android中專門提供了HandlerThread類,來解決該類問題。HandlerThread類是一個線程專門處理Hanlder的消息,依次從Handler的隊列中獲取信息,逐個進行處理,保證安全,不會出現混亂引發的異常。HandlerThread繼承於Thread,所以它本質就是個Thread。與普通Thread的差別就在於,它有個Looper成員變量.

使用示例

handlerThread = new HandlerThread("HandlerThread");
 handlerThread.start();
final Handler handler = new Handler(handlerThread.getLooper());

//執行一個異步任務
handler.post(new Runable());
//發送異步執行消息
handler.sendMessage();

接下來我們從HandlerThread的角度來解析一下Handler的工作原理和HandlerThraed之間的引用關係.

HandlerThread

看看官方的對他的講解

Handy class for starting a new thread that has a looper. The looper can then be used to create handler classes. Note that start() must still be called.

大致意思就是說HandlerThread可以創建一個帶有looper的線程。looper對象可以用於創建Handler類來進行來進行調度

我們從源碼分析一下

package android.os;


public class HandlerThread extends Thread {
    int mPriority;
    int mTid = -1;
    Looper mLooper;

    public HandlerThread(String name) {
        super(name);
        mPriority = Process.THREAD_PRIORITY_DEFAULT;
    }

    protected void onLooperPrepared() {
    }

    @Override
    public void run() {
        mTid = Process.myTid();
        Looper.prepare();
        synchronized (this) {
            mLooper = Looper.myLooper();
            notifyAll();
        }
        Process.setThreadPriority(mPriority);
        onLooperPrepared();
        Looper.loop();
        mTid = -1;
    }
}

可以看到HandlerThread實際上就是繼承於Thread

線程run()方法當中先調用Looper.prepare()初始化Looper,最後調用Looper.loop(),這樣我們就在該線程當中創建好Looper。

常用的Api

/用於返回與該線程相關聯的Looper對象
handlerThread.getLooper();
//獲得該線程的Id
handlerThread.getThreadId();
//結束當前的Looper 循環。
handlerThread.quit();
//用於looper取出的消息處理
handlerThread.run();

Looper

Lopper的講解重點圍繞prepare和loop兩個函數

prepare

private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

ThreadLocal相信大家已經不陌生了,ThreadLocal在多線程環境下,可以保證各個線程之間的變量互相隔離、相互獨立。簡單一句就是保證在當前線程的值唯一,不與其他線程共享數據.

loop

從單詞字面意思看是循環的意思,在Handler這個體系中looper也一個起到一個循環的作用,不斷的從MessageQueue取出message,然後調用handler處理

從下面的源碼我們可以很清楚的看到Lopper.loop函數中的執行的邏輯

 public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

       
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        // Allow overriding a threshold with a system prop. e.g.
        // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
        final int thresholdOverride =
                SystemProperties.getInt("log.looper."
                        + Process.myUid() + "."
                        + Thread.currentThread().getName()
                        + ".slow", 0);

        boolean slowDeliveryDetected = false;

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            
     // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

             //....此處省略部分...
            
             final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
            final long dispatchEnd;
            try {
                msg.target.dispatchMessage(msg);
                dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            
    //....此處省略部分...

我們可以看到從消息隊列中取出msg直接引用了target,而target就是Handler,這意味着最後分發到Handler中進行處理了

msg.target.dispatchMessage(msg)

Handler

首先我來看看Handler構造函數

/**
     * Use the provided {@link Looper} instead of the default one.
     *
     * @param looper The looper, must not be null.
     */
    public Handler(Looper looper) {
        this(looper, null, false);
    }
public Handler(Looper looper, Callback callback, boolean async) {
        mLooper = looper;
        mQueue = looper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

當我們創建Handler時就需要提供一個Looper對象,最後會將這個looper的消息隊列引用給到Handler,handler是如何使用這個隊列的呢,這個我們後面再來觀察一下

我們在看看默認沒有傳遞looper時,handler是如何工作的

 public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread " + Thread.currentThread()
                        + " that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

如果默認不提供的情況下,可以看到這裏取的就是當前線程的looper,所以爲什麼我們在使用handler需要指定爲Looper.getMainLooper,確保Handler的工作機制是在主線程,而非當前線程.

mLooper = Looper.myLooper();

public static @Nullable Looper myLooper() {
        return sThreadLocal.get();
}

post

post在Handler中用來執行一個任務

 public final boolean post(Runnable r){
    return  sendMessageDelayed(getPostMessage(r), 0);
}

上述代碼可以看到Runnable最後都會包裝成一個Message傳遞出去

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

最後enqueueMessage函數會調用MessageQueue中enqueueMessage函數

 boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }
  • 1.函數中首先檢測當前的消息隊列是有被handler所引用,檢測消息隊列是否已經標記已經退出了,此時就不會再繼續往下執行了。
  • 2.接下來就是匹配上一次執行消息是否爲空,如果爲空並且沒有延時處理的需求,則直接將本次的執行結果賦值給到mMessages
  • 3.檢測到消息不爲時,這裏就會循環去獲取上一次的消息所標記的下一個消息的進行匹配,當滿足條件時,將本次的消息標記給上一次的消息

看到這裏可能有點繞,我在看看messageQueue的next函數,其實所做的事情也是時間和消息標記下一個消息的處理

Message next() {

//.....省略一些代碼   
 if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
    }
 //.....省略一些代碼   
}    

Message原理

消息池實現原理

消息池實現原理
既然官方建議使用消息池來獲取消息,那麼在瞭解其內部機制之前,我們來看看Message中的消息池的設計。具體代碼如下:

從Message的消息池設計,我們大概能看出以下幾點:

private static final Object sPoolSync = new Object();//控制獲取從消息池中獲取消息。保證線程安全
private static Message sPool;//消息池
private static int sPoolSize = 0;//消息池中回收的消息數量
private static final int MAX_POOL_SIZE = 50;//消息池最大容量

該消息池在同一個消息循環中是共享的(sPool聲明爲static),
消息池中的最大容量爲50,
從消息池獲取消息是線程安全的。

從消息池中獲取消息

public static Message obtain() {
        synchronized (sPoolSync) {
            if (sPool != null) {
                Message m = sPool;
                sPool = m.next;
                m.next = null;
                m.flags = 0; // clear in-use flag
                sPoolSize--;
                return m;
            }
        }
        return new Message();
    }

從上述代碼中,我們可以瞭解,也就是當前 消息池不爲空(sPool !=null)的情況下,那麼我們就可以從消息池中獲取數據,相應的消息池中的消息數量會減少。消息池的內部實現是以鏈表的形式,其中spol指針指向當前鏈表的頭結點,從消息池中獲取消息是以移除鏈表中sPool所指向的節點的形式。

總結

以上的講解,相信對Handler工作原理以及Handler和HandlerThread之間的工作流程有一定理解了.
Handler、HandlerThread、Looper、Message之間的關係可以總結爲如下圖
在這裏插入圖片描述

在這裏插入圖片描述

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章