Netty源碼------NioEventLoop源碼詳解

Netty源碼------NioEventLoop

目錄

Netty源碼------NioEventLoop

1、初識 NioEventLoop 

2、NioEventLoop創建

3、NioEventLoop啓動

4、NioEventLoop執行過程

5、 Netty 解決JDK 空輪詢Bug

6、總結


1、初識 NioEventLoop 

1.1 先來簡單回顧一下Netty模型

  • Netty中的Channel系列類型,對應於經典Reactor模型中的client, 封裝了用戶的通訊連接。
  • Netty中的EventLoop系列類型,對應於經典Reactor模型中的Reactor,完成Channel的註冊、輪詢、分發。
  • Netty中的Handler系列類型,對應於經典Reactor模型中的Handler,不過Netty中的Handler設計得更加的高級和巧妙,使用了Pipeline模式。

爲了簡單瞭解,來個對比吧:

1、單線程模型,來看下面的應用代碼:
EventLoopGroup bossGroup = new NioEventLoopGroup(1);
ServerBootstrap server = new ServerBootstrap();
server.group(bossGroup);
2、多線程模型,再來看下面的應用代碼:
EventLoopGroup bossGroup = new NioEventLoopGroup(128);
ServerBootstrap server = new ServerBootstrap();
server.group(bossGroup);
3、主從線程模型,到這裏相信大家都已經想到了, 實現主從線程模型的代碼如下:
EventLoopGroup bossGroup = new NioEventLoopGroup();
EventLoopGroup workerGroup = new NioEventLoopGroup();
ServerBootstrap b = new ServerBootstrap();
b.group(bossGroup, workerGroup);

bossGroup 爲主線程,而 workerGroup 中的線程是 CPU 核心數乘以 2,因此對應的到 Reactor 線程模型中,我們知

道, 這樣設置的 NioEventLoopGroup 其實就是 Reactor 主從多線程模型。

1.2 再來了解一下NioEventLoop 和本地Selector的對應關係

NioEventLoop類型綁定了兩個重要的java本地類型:一個線程類型,一個Selector類型。本地Selector屬性的作用,用於註冊Java本地channel。本地線程屬性的作用,主要是用於輪詢。

wps565F.tmp

 

1.3 NioEventLoopGroup與NioEventLoop的關係

下面這張圖其實是對Netty中NioEventLoop執行的流程圖:

  • 從裏面可以知道,NioEventLoop就是在NioEventLoopGroup中創建的,一個NioEventLoopGroup可以包含多個NioEventLoop。
  • 它會在Channel註冊完之後,調用run()開始工作。詳細的內容,下面介紹:

下面進入源碼分析: 

2、NioEventLoop創建

從我們常寫的代碼入手:

public void start() {
		init();

		//Netty封裝了NIO,Reactor模型,Boss,worker
		// Boss線程
		EventLoopGroup bosGroup = new NioEventLoopGroup();
		//worker工作線程
		EventLoopGroup workerGroup = new NioEventLoopGroup();
		try {
			//相當於Nio中的ServerSocketChannel
			ServerBootstrap server = new ServerBootstrap();
			//開始設置各種參數
			server.group(bosGroup, workerGroup)
					//主線程處理類
					.channel(NioServerSocketChannel.class)
					//子線程處理類Handler
					.childHandler(new ChannelInitializer<SocketChannel>() {
						protected void initChannel(SocketChannel client) throws Exception {
							//這裏採用了責任鏈模式進行
							client.pipeline().addLast(new HttpResponseEncoder()) //編碼器
									.addLast(new HttpRequestDecoder())    //解碼器
									.addLast(new GPTomcatHandler());     //業務邏輯處理
						}
					})
					.option(ChannelOption.SO_BACKLOG, 64)  //針對主線程的配置,分配線程最大數量
					.childOption(ChannelOption.SO_KEEPALIVE, true); //針對子線程的配置,保喫長連接
			//啓動服務,綁定端口,異步
			ChannelFuture future = server.bind(port).sync();
			System.out.println("GP Tomcat 已啓動,監聽的端口是:" + port);
			future.channel().closeFuture().sync();
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			//關閉線程池
             bosGroup.shutdownGracefully();
             workerGroup.shutdownGracefully();
		}
	}

從new NioEventLoopGroup() 開始跟蹤,我們會依次得到下面的代碼:

public NioEventLoopGroup() {
        this(0);
}

public NioEventLoopGroup(int nThreads) {
        this(nThreads, (Executor) null);
}

//線程組默認線程數爲2倍的cpu數
//DEFAULT_EVENT_LOOP_THREADS=2*Runtime.getRuntime().availableProcessors()
protected MultithreadEventLoopGroup(int nThreads, Executor executor, Object... args) {
    super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, executor, args);
}

#MultithreadEventExecutorGroup類,核心方法
protected MultithreadEventExecutorGroup(int nThreads, Executor executor,
                                            EventExecutorChooserFactory chooserFactory, Object... args) {
        if (nThreads <= 0) {
            throw new IllegalArgumentException(String.format("nThreads: %d (expected: > 0)", nThreads));
        }

        if (executor == null) {
            //線程創建器,負責創建NioEventLoopGroup對應底層線程
            executor = new ThreadPerTaskExecutor(newDefaultThreadFactory());
        }

        children = new EventExecutor[nThreads];//創建NioEventLoop對象數組

        for (int i = 0; i < nThreads; i ++) {
            boolean success = false;
            try {
                //for循環創建每個NioEventLoop,調用newChild(),配置NioEventLoop核心參數
                children[i] = newChild(executor, args);//newChild
                success = true;
            } catch (Exception e) {
                // TODO: Think about if this is a good exception type
                throw new IllegalStateException("failed to create a child event loop", e);
            } finally {
                if (!success) {
                    for (int j = 0; j < i; j ++) {
                        children[j].shutdownGracefully();
                    }

                    for (int j = 0; j < i; j ++) {
                        EventExecutor e = children[j];
                        try {
                            while (!e.isTerminated()) {
                                e.awaitTermination(Integer.MAX_VALUE, TimeUnit.SECONDS);
                            }
                        } catch (InterruptedException interrupted) {
                            // Let the caller handle the interruption.
                            Thread.currentThread().interrupt();
                            break;
                        }
                    }
                }
            }
        }
        //線程選擇器,給每個新連接分配NioEventLoop線程
        chooser = chooserFactory.newChooser(children);

        final FutureListener<Object> terminationListener = new FutureListener<Object>() {
            @Override
            public void operationComplete(Future<Object> future) throws Exception {
                if (terminatedChildren.incrementAndGet() == children.length) {
                    terminationFuture.setSuccess(null);
                }
            }
        };

        for (EventExecutor e: children) {
            e.terminationFuture().addListener(terminationListener);
        }

        Set<EventExecutor> childrenSet = new LinkedHashSet<EventExecutor>(children.length);
        Collections.addAll(childrenSet, children);
        readonlyChildren = Collections.unmodifiableSet(childrenSet);
  }
    
#使用threadFactory創建線程
public final class ThreadPerTaskExecutor implements Executor {
    private final ThreadFactory threadFactory;
    public ThreadPerTaskExecutor(ThreadFactory threadFactory) {
        if (threadFactory == null) {
            throw new NullPointerException("threadFactory");
        }
        this.threadFactory = threadFactory;
    }

    @Override
    public void execute(Runnable command) {
      //每次執行任務創建一個線程,newDefaultThreadFactory定義了nioEventLoop-1-xx的線程名
        threadFactory.newThread(command).start();
    }
}

從上面我們可以看出創建NioEventLoopGroup的大致過程如下:

  • 如果沒有傳入nThread,nThread 默認爲CPU核心數的兩倍
  • 線程創建器,負責創建NioEventLoopGroup對應底層線程
  • 創建NioEventLoop對象數組,並配置好其的核心參數

接下來,我們進入newChild()方法,也就是配置NioEventLoop核心參數,看看他到底幹了些啥事。

#NioEventLoopGroup
@Override
    protected EventLoop newChild(Executor executor, Object... args) throws Exception {
        return new NioEventLoop(this, executor, (SelectorProvider) args[0],
            ((SelectStrategyFactory) args[1]).newSelectStrategy(), (RejectedExecutionHandler) args[2]);
    }

    
NioEventLoop(NioEventLoopGroup parent, Executor executor, SelectorProvider selectorProvider,
                 SelectStrategy strategy, RejectedExecutionHandler rejectedExecutionHandler) {
        super(parent, executor, false, DEFAULT_MAX_PENDING_TASKS, rejectedExecutionHandler);//父類構造函數
        if (selectorProvider == null) {
            throw new NullPointerException("selectorProvider");
        }
        if (strategy == null) {
            throw new NullPointerException("selectStrategy");
        }
        provider = selectorProvider;
        final SelectorTuple selectorTuple = openSelector();
        selector = selectorTuple.selector;
        unwrappedSelector = selectorTuple.unwrappedSelector;
        selectStrategy = strategy;
    }
    
#SingleThreadEventExecutor類,父類構造函數
protected SingleThreadEventExecutor(EventExecutorGroup parent, Executor executor,
                                        boolean addTaskWakesUp, int maxPendingTasks,
                                        RejectedExecutionHandler rejectedHandler) {
        super(parent);
        this.addTaskWakesUp = addTaskWakesUp;
        this.maxPendingTasks = Math.max(16, maxPendingTasks);
        this.executor = ObjectUtil.checkNotNull(executor, "executor");
        taskQueue = newTaskQueue(this.maxPendingTasks);//task隊列,外部線程將任務扔進隊列
        rejectedExecutionHandler = ObjectUtil.checkNotNull(rejectedHandler, "rejectedHandler");
    }
    
//task queue
protected Queue<Runnable> newTaskQueue(int maxPendingTasks) {
        // This event loop never calls takeTask()
        return PlatformDependent.newMpscQueue(maxPendingTasks);
}
    
private SelectorTuple openSelector() {
        final Selector unwrappedSelector;
        try {
            unwrappedSelector = provider.openSelector();
        } catch (IOException e) {
            throw new ChannelException("failed to open a new selector", e);
        }

        if (DISABLE_KEYSET_OPTIMIZATION) {
            return new SelectorTuple(unwrappedSelector);
        }

        final SelectedSelectionKeySet selectedKeySet = new SelectedSelectionKeySet();//用數組實現set

        Object maybeSelectorImplClass = AccessController.doPrivileged(new PrivilegedAction<Object>() {
            @Override
            public Object run() {
                try {
                    return Class.forName(
                            "sun.nio.ch.SelectorImpl",
                            false,
                            PlatformDependent.getSystemClassLoader());
                } catch (Throwable cause) {
                    return cause;
                }
            }
        });

        if (!(maybeSelectorImplClass instanceof Class) ||
                // ensure the current selector implementation is what we can instrument.
                !((Class<?>) maybeSelectorImplClass).isAssignableFrom(unwrappedSelector.getClass())) {
            if (maybeSelectorImplClass instanceof Throwable) {
                Throwable t = (Throwable) maybeSelectorImplClass;
                logger.trace("failed to instrument a special java.util.Set into: {}", unwrappedSelector, t);
            }
            return new SelectorTuple(unwrappedSelector);
        }

        final Class<?> selectorImplClass = (Class<?>) maybeSelectorImplClass;
        //通過反射方式設置selectedKeySet
        Object maybeException = AccessController.doPrivileged(new PrivilegedAction<Object>() {
            @Override
            public Object run() {
                try {
                    Field selectedKeysField = selectorImplClass.getDeclaredField("selectedKeys");
                    Field publicSelectedKeysField = selectorImplClass.getDeclaredField("publicSelectedKeys");

                    Throwable cause = ReflectionUtil.trySetAccessible(selectedKeysField);
                    if (cause != null) {
                        return cause;
                    }
                    cause = ReflectionUtil.trySetAccessible(publicSelectedKeysField);
                    if (cause != null) {
                        return cause;
                    }

                    selectedKeysField.set(unwrappedSelector, selectedKeySet);
                    publicSelectedKeysField.set(unwrappedSelector, selectedKeySet);
                    return null;
                } catch (NoSuchFieldException e) {
                    return e;
                } catch (IllegalAccessException e) {
                    return e;
                }
            }
        });

        if (maybeException instanceof Exception) {
            selectedKeys = null;
            Exception e = (Exception) maybeException;
            logger.trace("failed to instrument a special java.util.Set into: {}", unwrappedSelector, e);
            return new SelectorTuple(unwrappedSelector);
        }
        selectedKeys = selectedKeySet;
        logger.trace("instrumented a special java.util.Set into: {}", unwrappedSelector);
        return new SelectorTuple(unwrappedSelector,
                                 new SelectedSelectionKeySetSelector(unwrappedSelector, selectedKeySet));
    }
    

     進行NioEventLoop參數初始化時,幹了很多事,但我們重點知道:

  • 創建一個selector,並調用provider.openSelector()創建selector,輪詢初始化連接;
  • 創建了一個線程阻塞隊列BlockIngqueue<Runable>

接下來我們在回到newChild()方法之後會調用的chooserFactory.newChooser(children);看看它又幹了什麼大事。

#DefaultEventExecutorChooserFactory 類
public final class DefaultEventExecutorChooserFactory implements EventExecutorChooserFactory {

    public static final DefaultEventExecutorChooserFactory INSTANCE = new DefaultEventExecutorChooserFactory();

    private DefaultEventExecutorChooserFactory() { }

    @SuppressWarnings("unchecked")
    @Override
    public EventExecutorChooser newChooser(EventExecutor[] executors) {
        if (isPowerOfTwo(executors.length)) {
            return new PowerOfTwoEventExecutorChooser(executors);
        } else {
            return new GenericEventExecutorChooser(executors);
        }
    }

    //判斷長度是否是2的冪,是則使用PowerOfTwoEventExecutorChooser,更高效
    private static boolean isPowerOfTwo(int val) {
        return (val & -val) == val;
    }

    private static final class PowerOfTwoEventExecutorChooser implements EventExecutorChooser {
        private final AtomicInteger idx = new AtomicInteger();
        private final EventExecutor[] executors;

        PowerOfTwoEventExecutorChooser(EventExecutor[] executors) {
            this.executors = executors;
        }

        @Override
        public EventExecutor next() {
            return executors[idx.getAndIncrement() & executors.length - 1];//&比取模高效,循環下標
        }
    }

    private static final class GenericEventExecutorChooser implements EventExecutorChooser {
        private final AtomicInteger idx = new AtomicInteger();
        private final EventExecutor[] executors;

        GenericEventExecutorChooser(EventExecutor[] executors) {
            this.executors = executors;
        }

        @Override
        public EventExecutor next() {
            return executors[Math.abs(idx.getAndIncrement() % executors.length)];//取模
        }
    }
}

上面的代碼邏輯主要表達的意思是:即如果nThreads 是2 的冪,則使用PowerOfTwoEventExecutorChooser,否則使用GenericEventExecutorChooser。這兩個Chooser 都重寫next()方法。next()方法的主要功能就是將數組索引循環位移,如下圖所示:

  當索引移動最後一個位置時,再調用next()方法就會將索引位置重新指向0。

  這個運算邏輯其實很簡單,就是每次讓索引自增後和數組長度取模:idx.getAndIncrement() % executors.length。但是就連一個非常簡單的數組索引運算,Netty 都幫我們做了優化。因爲在計算機底層,&與比%運算效率更高。

     最後,來張時序圖總結一下:

3、NioEventLoop啓動

NioEventLoop的啓動此時是在Channel初始化,並在綁定端口之後開始的。具體可以回顧上篇博客:


Channel的創建:https://blog.csdn.net/qqq3117004957/article/details/106440866#Channel%E6%B3%A8%E5%86%8C
#AbstractBootstrap類doBind方法
private ChannelFuture doBind(final SocketAddress localAddress) {
        final ChannelFuture regFuture = initAndRegister();
        final Channel channel = regFuture.channel();
        if (regFuture.cause() != null) {
            return regFuture;
        }

        if (regFuture.isDone()) {
            // At this point we know that the registration was complete and successful.
            ChannelPromise promise = channel.newPromise();
            doBind0(regFuture, channel, localAddress, promise);
            return promise;
        } else {
            // Registration future is almost always fulfilled already, but just in case it's not.
            final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);
            regFuture.addListener(new ChannelFutureListener() {
                @Override
                public void operationComplete(ChannelFuture future) throws Exception {
                    Throwable cause = future.cause();
                    if (cause != null) {
                        // Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an
                        // IllegalStateException once we try to access the EventLoop of the Channel.
                        promise.setFailure(cause);
                    } else {
                        // Registration was successful, so set the correct executor to use.
                        // See https://github.com/netty/netty/issues/2586
                        promise.registered();

                        doBind0(regFuture, channel, localAddress, promise);
                    }
                }
            });
            return promise;
        }
    }

#AbstractBootstrap類doBind0方法
private static void doBind0(
            final ChannelFuture regFuture, final Channel channel,
            final SocketAddress localAddress, final ChannelPromise promise) {

        // This method is invoked before channelRegistered() is triggered.  Give user handlers a chance to set up
        // the pipeline in its channelRegistered() implementation.
        //調用SingleThreadEventExecutor中execute方法
        channel.eventLoop().execute(new Runnable() {
            @Override
            public void run() {
                if (regFuture.isSuccess()) {
                    channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
                } else {
                    promise.setFailure(regFuture.cause());
                }
            }
        });
    }
    
#SingleThreadEventExecutor中execute方法
public void execute(Runnable task) {
        if (task == null) {
            throw new NullPointerException("task");
        }

        boolean inEventLoop = inEventLoop();//判斷是否當前eventloop中
        if (inEventLoop) {
            addTask(task);
        } else {
            startThread();//創建線程
            addTask(task);
            if (isShutdown() && removeTask(task)) {
                reject();
            }
        }

        if (!addTaskWakesUp && wakesUpForTask(task)) {
            wakeup(inEventLoop);
        }
    }

    public boolean inEventLoop() {
        return inEventLoop(Thread.currentThread());
    }

    public boolean inEventLoop(Thread thread) {
        return thread == this.thread;
    }
    
    private void startThread() {
        if (STATE_UPDATER.get(this) == ST_NOT_STARTED) {
            if (STATE_UPDATER.compareAndSet(this, ST_NOT_STARTED, ST_STARTED)) {
                doStartThread();
            }
        }
    }

//啓動線程  
private void doStartThread() {
        assert thread == null;
        executor.execute(new Runnable() {
            @Override
            public void run() {
                thread = Thread.currentThread();//保存當前線程,用於判斷
                if (interrupted) {
                    thread.interrupt();
                }

                boolean success = false;
                updateLastExecutionTime();
                try {
                    SingleThreadEventExecutor.this.run();//觸發NioEventLoop執行
                    success = true;
                } catch (Throwable t) {
                    logger.warn("Unexpected exception from an event executor: ", t);
                } finally {
                    for (;;) {
                        int oldState = STATE_UPDATER.get(SingleThreadEventExecutor.this);
                        if (oldState >= ST_SHUTTING_DOWN || STATE_UPDATER.compareAndSet(
                                SingleThreadEventExecutor.this, oldState, ST_SHUTTING_DOWN)) {
                            break;
                        }
                    }

                    // Check if confirmShutdown() was called at the end of the loop.
                    if (success && gracefulShutdownStartTime == 0) {
                        logger.error("Buggy " + EventExecutor.class.getSimpleName() + " implementation; " +
                                SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called " +
                                "before run() implementation terminates.");
                    }

                    try {
                        // Run all remaining tasks and shutdown hooks.
                        for (;;) {
                            if (confirmShutdown()) {
                                break;
                            }
                        }
                    } finally {
                        try {
                            cleanup();
                        } finally {
                            STATE_UPDATER.set(SingleThreadEventExecutor.this, ST_TERMINATED);
                            threadLock.release();
                            if (!taskQueue.isEmpty()) {
                                logger.warn(
                                        "An event executor terminated with " +
                                                "non-empty task queue (" + taskQueue.size() + ')');
                            }

                            terminationFuture.setSuccess(null);
                        }
                    }
                }
            }
        });
    }

NioEventLoop啓動流程步驟:

  • bind->execute(task)[入口]:調用NioEventLoop的execute()方法執行綁定端口,操作封裝的Task
  • startThread()->doStartThread()[創建線程]:非NioEventLoop線程調用startThread()方法,創建啓動線程
  • ThreadPerTaskExecutor.execute():線程執行器執行任務,創建並啓動FastThreadLocalThread線程
  • NioEventLoop.run()[啓動]

4、NioEventLoop執行過程

在上面doStartThread()方法中最終調用的是SingleThreadEventExecutor.this.run()方法,這個this 就是NioEventLoop 對象:

protected void run() {
        for (;;) {
            try {
                try {
                    switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {
                    case SelectStrategy.CONTINUE:
                        continue;
                    case SelectStrategy.BUSY_WAIT:
                    case SelectStrategy.SELECT:
                        select(wakenUp.getAndSet(false));

                        if (wakenUp.get()) {
                            selector.wakeup();
                        }
                    default:
                    }
                cancelledKeys = 0;
                needsToSelectAgain = false;
                final int ioRatio = this.ioRatio;
                if (ioRatio == 100) {
                    try {
                        processSelectedKeys();
                    } finally {
                        runAllTasks();
                    }          ......
          }
    }

終於看到似曾相識的代碼。上面代碼主要就是用一個死循環,在不斷地輪詢SelectionKey.select()方法,主要用來解決JDK 空輪詢Bug,而processSelectedKeys()就是針對不同的輪詢事件進行處理。如果客戶端有數據寫入,最終也會調用AbstractNioMessageChannel 的doReadMessages()方法。那麼我們先來看一下是哪裏調用的,通過追蹤processSelectedKeys()方法,最後會調用到NioEventLoop的processSelectedKey 方法:

private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
        final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
        if (!k.isValid()) {
            final EventLoop eventLoop;

            eventLoop = ch.eventLoop();
int readyOps = k.readyOps();

            if ((readyOps & SelectionKey.OP_CONNECT) != 0) {

                int ops = k.interestOps();
                ops &= ~SelectionKey.OP_CONNECT;
                k.interestOps(ops);

                unsafe.finishConnect();
            }

            if ((readyOps & SelectionKey.OP_WRITE) != 0) {
                ch.unsafe().forceFlush();
            }

            if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
                unsafe.read();
            }
        } catch (CancelledKeyException ignored) {
            unsafe.close(unsafe.voidPromise());
        }
    }

  這裏可以看到熟悉的代碼,當有鏈接進來的時候,便會走 unsafe.read():這個裏面就調用了doReadMessages

  1. Connect, 即連接事件(TCP 連接), 對應於SelectionKey.OP_CONNECT.int值爲16.
  2. Accept, 即確認事件, 對應於SelectionKey.OP_ACCEPT.int值爲8.
  3. Read, 即讀事件, 對應於SelectionKey.OP_READ, 表示 buffer 可讀.int值爲1
  4. Write, 即寫事件, 對應於SelectionKey.OP_WRITE, 表示 buffer 可寫.int值爲4

總結一下:

  1. Netty 中Selector 事件輪詢是從EventLoop 的execute()方法開始的。
  2. 在EventLoop 的execute()方法中,會爲每一個任務創建一個獨立的線程,並保存到無鎖化串行任務隊列。
  3. 線程任務隊列的每個任務實際調用的是NioEventLoop 的run()方法。
  4. 在run 方法中調用processSelectedKeys()處理輪詢事件。

5、 Netty 解決JDK 空輪詢Bug

各位應該早有耳聞臭名昭著的Java NIO epoll 的bug,它會導致Selector 空輪詢,最終導致CPU 100%。官方聲稱在JDK1.6 版本的update18 修復了該問題,但是直到JDK1.7 版本該問題仍舊存在,只不過該BUG 發生概率降低了一些而已,它並沒有被根本解決。出現此Bug 是因爲當Selector 的輪詢結果爲空,也沒有wakeup 或新消息處理,則發生空輪詢,CPU 使用率達到100%。

在Netty 中最終的解決辦法是:創建一個新的Selector,將可用事件重新註冊到新的Selector 中來終止空輪訓。前面我們有提到select()方法解決了JDK 空輪訓的Bug,它到底是如何解決的呢?下面我們來一探究竟,進入select()方法的源碼:

private void select(boolean oldWakenUp) throws IOException {
        Selector selector = this.selector;
        try {
            int selectCnt = 0;
            long currentTimeNanos = System.nanoTime();
            long selectDeadLineNanos = currentTimeNanos + delayNanos(currentTimeNanos);

            for (;;) {          // .......int selectedKeys = selector.select(timeoutMillis);
                selectCnt ++;

                if (selectedKeys != 0 || oldWakenUp || wakenUp.get() || hasTasks() || hasScheduledTasks()) {
                    break;
                }
                if (Thread.interrupted()) {
            //.....
                    selectCnt = 1;
                    break;
                }

                long time = System.nanoTime();
                if (time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos) {
                    // timeoutMillis elapsed without anything selected.
                    selectCnt = 1;
                } else if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 &&
                        selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) {
                    selector = selectRebuildSelector(selectCnt);
                    selectCnt = 1;
                    break;
                }

                currentTimeNanos = time;
            }
    }

從上面的代碼中可以看出,Selector 每一次輪詢都計數selectCnt++,開始輪詢會計時賦值給timeoutMillis,輪詢完成會計時賦值給time,這兩個時間差會有一個時間差,而這個時間差就是每次輪詢所消耗的時間。從上面的的邏輯看出,如果每次輪詢消耗的時間爲0,且重複次數超過512 次,則調用rebuildSelector()方法,即重構Selector。

繼續跟進源碼: 

private void rebuildSelector0() {
        final Selector oldSelector = selector;
        final SelectorTuple newSelectorTuple;

        newSelectorTuple = openSelector();
      // Register all channels to the new Selector.
        int nChannels = 0;
        for (SelectionKey key: oldSelector.keys()) {
            Object a = key.attachment();
            try {
                if (!key.isValid() || key.channel().keyFor(newSelectorTuple.unwrappedSelector) != null) {
                    continue;
                }

                int interestOps = key.interestOps();
                key.cancel();
                SelectionKey newKey = key.channel().register(newSelectorTuple.unwrappedSelector, interestOps, a);
                
    }

在rebuildSelector()方法中,主要做了三件事情:

  1. 創建一個新的Selector。
  2. 將原來Selector 中註冊的事件全部取消。
  3. 將可用事件重新註冊到新的Selector 中,並激活。

6、Netty是如何實現異步串行無鎖化

在外部線程調用EventLoop或者channel的一些方法的時候,都會調用InEventLoop()方法檢查當前線程是否是NioEventloop中的線程,如如果是外部線程,就會將外部線程的的所有操作封裝成爲一個task,放進EventLoop的MPSCQ裏面,然後在NioEventLoop執行過程的第三個部分,這些task會被依次執行

以下從服務端bind()方法進入,進入dobind0()方法:
在外部線程執行Executer


private void startThread() {
	// 其他代碼省略。。。。
            this.doStartThread();       // -------------------------》在此方法中啓動線程
}

private void doStartThread() {
	    //這裏的executor就是之前的線程創建器:ThreadPerTaskExecutor,
	    //執行execute方法之後會創建一個FastLocalThread(netty包裝的Thread),並執行run();
    this.executor.execute( new Runnable() {         // -----------------------》進入execute方法源碼:
        public void run() { 
         部分代碼省略。。。。
   }

io.netty.util.concurrent.ingleThreadEventExecutor
public void execute(Runnable task) {
        if (task == null) {
            throw new NullPointerException("task");
        } else {
            boolean inEventLoop = this.inEventLoop();   // -------------------->在此處判斷當前線程是不是EventLoop中的線程下面繼續跟源碼。
            this.addTask(task);   //將次任務將入任務隊列
            if (!inEventLoop) {
                this.startThread();
                if (this.isShutdown()) {
                    boolean reject = false;
                    try {
                        if (this.removeTask(task)) {
                            reject = true;
                        }
                    } catch (UnsupportedOperationException var5) {
                        ;
                    }
                    if (reject) {
                        reject();
                    }
                }
            }

            if (!this.addTaskWakesUp && this.wakesUpForTask(task)) {
                this.wakeup(inEventLoop);
            }
        }
    }
    
io.netty.util.concurrent.SingleThreadEventExecutor
public boolean inEventLoop(Thread thread) {
        return thread == this.thread; // 返回的是當前線程是不是EvenetLoop中的線程
    }

7、總結

說實話,自己總結了這麼長,看完都得花半個小時以上,但我認爲了解源碼並不是爲了記住它,而是從中瞭解Netty的工作機制,有一定的印象就爲成功。所以來個小總結:

  • NioEventLoop就相當於NIO編程中的Reactor;
  • 默認的一個NioEventLopGroup會創建CPU核心數的2倍線,即NioEventLoop的數量;
  • NioEventLoop是在Channel註冊好之後,調用doBind0()方法開始的;

 

Netty空輪詢的解決方法:

netty 會在每次進行 selector.select(timeoutMillis) 之前記錄一下開始時間currentTimeNanos,在select之後記錄一下結束時間,判斷select操作是否至少持續了timeoutMillis秒(這裏將time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos改成time - currentTimeNanos >= TimeUnit.MILLISECONDS.toNanos(timeoutMillis)或許更好理解一些), 如果持續的時間大於等於timeoutMillis,說明就是一次有效的輪詢,重置selectCnt標誌,否則,表明該阻塞方法並沒有阻塞這麼長時間,可能觸發了jdk的空輪詢bug,當空輪詢的次數超過一個閥值的時候,默認是512,就開始重建selector。

netty是如何實現異步串行化的:

在外部線程調用EventLoop或者channel的一些方法的時候,都會調用InEventLoop()方法檢查當前線程是否是NioEventloop中的線程,如如果是外部線程,就會將外部線程的的所有操作封裝成爲一個task,放進EventLoop的MPSCQ裏面,然後在NioEventLoop執行過程的第三個部分,這些task會被依次執行。

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章