生成對抗網絡GAN(三)基於Tensorflow2.0的Fashion-MNIST生成

基於Tensorflow2.0的Fashion-MNIST生成

在這裏插入圖片描述

 圖像來源:深度學習案例:用tensorflow2.0實現Fashion-MNIST數據集分類

一、生成預覽

二、DCGAN簡介

DCGAN,全稱爲Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks(http://arxiv.org/pdf/1511.06434),主要創新爲將100維均勻分佈的Z映射到小空間範圍的卷積表示法中得到多個特徵向量。通過一系列小數步長卷積four fractionally-strided (在最近的一些論文中,這些被錯誤地稱爲反捲積),將這個高維表示轉換成一個64 x 64像素的圖像。沒有使用全連接層和池化層。

除輸出層使用Tanh函數外,生成器還使用ReLU激活函數(Nair & Hinton, 2010)。我們觀察到,使用有界激活使模型能夠更快地學習,以飽和和覆蓋訓練分佈的顏色空間。在鑑別器中,我們發現漏整流激活(Maas et al., 2013) (Xu et al., 2015)工作良好,特別是對於高分辨率建模。這與最初使用maxout激活的GAN論文形成了對比(Goodfellow et al. 2013)。

穩定的深卷積GANs架構指南

1.用strided convolutions (discriminator)和fractional-strided convolutions (generator)替換池化層。

2.在生成器和鑑別器中使用batchnorm。

3.爲更深層的架構移除完全連接的隱藏層。

4.G除輸出層使用Tanh外,其他層均使用ReLU激活。

5.在鑑別器中對所有層使用LeakyReLU激活 

三、代碼

  •  構建生成器G
# tf2 生成時裝

import tensorflow as tf
from tensorflow.keras import layers

def make_generator_model():
    model = tf.keras.Sequential()
    model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,)))
    model.add(layers.BatchNormalization())
    model.add(layers.LeakyReLU())

    model.add(layers.Reshape((7, 7, 256)))
    assert model.output_shape == (None, 7, 7, 256) # Note: None is the batch size

    model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
    assert model.output_shape == (None, 7, 7, 128)
    model.add(layers.BatchNormalization())
    model.add(layers.LeakyReLU())

    model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
    assert model.output_shape == (None, 14, 14, 64)
    model.add(layers.BatchNormalization())
    model.add(layers.LeakyReLU())

    model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
    assert model.output_shape == (None, 28, 28, 1)

    return model

import matplotlib.pyplot as plt

generator = make_generator_model()

noise = tf.random.normal([1, 100])
generated_image = generator(noise, training=False)

plt.imshow(generated_image[0, :, :, 0], cmap='gray')

  •  構建判別器
def make_discriminator_model():
    model = tf.keras.Sequential()
    model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',
                                     input_shape=[28, 28, 1]))
    model.add(layers.LeakyReLU())
    model.add(layers.Dropout(0.3))

    model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
    model.add(layers.LeakyReLU())
    model.add(layers.Dropout(0.3))

    model.add(layers.Flatten())
    model.add(layers.Dense(1))

    return model

discriminator = make_discriminator_model()
decision = discriminator(generated_image)
print(decision)
tf.Tensor([[0.00181567]], shape=(1, 1), dtype=float32)
  • 構建損失函數
# 該方法返回計算交叉熵損失的輔助函數
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

# 該方法量化判別器從判斷真僞圖片的能力。它將判別器對真實圖片的預測值與值全爲 1 的數組進行對比,將判別器對僞造(生成的)圖片的預測值與值全爲 0 的數組進行對比。
def discriminator_loss(real_output, fake_output):
    real_loss = cross_entropy(tf.ones_like(real_output), real_output)
    fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
    total_loss = real_loss + fake_loss
    return total_loss

# 生成器損失量化其欺騙判別器的能力。直觀來講,如果生成器表現良好,判別器將會把僞造圖片判斷爲真實圖片(或 1)。
def generator_loss(fake_output):
    return cross_entropy(tf.ones_like(fake_output), fake_output)

# 需要分別訓練兩個網絡,判別器和生成器的優化器是不同的。
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

# 注意 `tf.function` 的使用,該註解使函數被“編譯”
noise_dim = 100

@tf.function
def train_step(images):
    noise = tf.random.normal([BATCH_SIZE, noise_dim])

    with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
        generated_images = generator(noise, training=True)
        
        real_output = discriminator(images, training=True)
        fake_output = discriminator(generated_images, training=True)

        gen_loss = generator_loss(fake_output)
        disc_loss = discriminator_loss(real_output, fake_output)

    gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
    gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)

    generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
    discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
    
    return gen_loss, disc_loss
  • 準備Fashion-MNIST數據 
# 準備數據
(train_images, train_labels), (_, _) = tf.keras.datasets.fashion_mnist.load_data()

train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1]

BUFFER_SIZE = 60000
BATCH_SIZE = 256

# Batch and shuffle the data
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)

def generate_and_save_images(model, epoch, test_input):
    # 注意 training` 設定爲 False
    # 因此,所有層都在推理模式下運行(batchnorm)
    predictions = model(test_input, training=False)

    fig = plt.figure(figsize=(4,4))

    for i in range(predictions.shape[0]):
        plt.subplot(4, 4, i+1)
        plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
        plt.axis('off')

    plt.savefig('./output/fashion-mnist/image_at_epoch_{:04d}.png'.format(epoch))
    plt.show()
  • Training
noise_dim = 100
num_examples_to_generate = 16

seed = tf.random.normal([num_examples_to_generate, noise_dim])

def train(dataset, epochs):
    for epoch in range(epochs):
        for i,image_batch in enumerate(dataset):
            g,d = train_step(image_batch)
            print("batch %d, gen_loss %f,disc_loss %f" % (i, g.numpy(),d.numpy()))
            
        # 每個 epoch 生成一次圖片
        generate_and_save_images(generator, epoch, seed)
    
    # 保存模型
    generator.save('./save/dcgan_fashion-mnist_tf2.h5')

EPOCHS = 50
train(train_dataset, EPOCHS)
  •  Test
# 加載模型

import tensorflow as tf
import matplotlib.pyplot as plt

model = tf.keras.models.load_model('./save/dcgan_fashion-mnist_tf2.h5')

def generate_and_save_images(model, epoch, test_input):
    # 注意 training` 設定爲 False
    # 因此,所有層都在推理模式下運行(batchnorm)
    predictions = model(test_input, training=False)

    fig = plt.figure(figsize=(4,4))

    for i in range(predictions.shape[0]):
        plt.subplot(4, 4, i+1)
        plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
        plt.axis('off')

    plt.show()

test_input = tf.random.normal([16, 100])
epoch = 10

generate_and_save_images(model, epoch, test_input)

四、注意事項

  • GPU訓練更佳:10min,CPU訓練速度:約150min
  • tensorflow2版本

瞭解更多,關注公衆號:AI預見未來

 

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章