zookeeper-分佈式鎖

實現的原理:
 1. 利用Zookeeper瞬時有序節點的特性
 2. 多線程併發創建瞬時節點時,得到有序的序列
 3. 序號最小線程獲取鎖
 4. 其它線程監聽自己序號的前一個序號
 5. 前一個線程執行完成,刪除自己序號的節點
 6. 下一個序號的線程得到通知,繼續執行

一.zookeeper鎖的實現

zk 分佈式鎖,其實可以做的比較簡單,就是某個節點嘗試創建臨時 znode,此時創建成功了就獲取了這個鎖;這個時候別的客戶端來創建鎖會失敗,只能註冊個監聽器監聽這個鎖。釋放鎖就是刪除這個 znode,一旦釋放掉就會通知客戶端,然後有一個等待着的客戶端就可以再次重新加鎖。

public class ZooKeeperSession {

    private static CountDownLatch connectedSemaphore = new CountDownLatch(1);

    private ZooKeeper zookeeper;
    private CountDownLatch latch;

    public ZooKeeperSession() {
        try {
            this.zookeeper = new ZooKeeper("192.168.31.187:2181,192.168.31.19:2181,192.168.31.227:2181", 50000, new ZooKeeperWatcher());
            try {
                connectedSemaphore.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            System.out.println("ZooKeeper session established......");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    /**
     * 獲取分佈式鎖
     * 
     * @param productId
     */
    public Boolean acquireDistributedLock(Long productId) {
        String path = "/product-lock-" + productId;

        try {
            zookeeper.create(path, "".getBytes(), Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
            return true;
        } catch (Exception e) {
            while (true) {
                try {
                    // 相當於是給node註冊一個監聽器,去看看這個監聽器是否存在
                    Stat stat = zk.exists(path, true);

                    if (stat != null) {
                        this.latch = new CountDownLatch(1);
                        this.latch.await(waitTime, TimeUnit.MILLISECONDS);
                        this.latch = null;
                    }
                    zookeeper.create(path, "".getBytes(), Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
                    return true;
                } catch (Exception ee) {
                    continue;
                }
            }

        }
        return true;
    }

    /**
     * 釋放掉一個分佈式鎖
     * 
     * @param productId
     */
    public void releaseDistributedLock(Long productId) {
        String path = "/product-lock-" + productId;
        try {
            zookeeper.delete(path, -1);
            System.out.println("release the lock for product[id=" + productId + "]......");
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    /**
     * 建立zk session的watcher
    */
    private class ZooKeeperWatcher implements Watcher {

        public void process(WatchedEvent event) {
            System.out.println("Receive watched event: " + event.getState());

            if (KeeperState.SyncConnected == event.getState()) {
                connectedSemaphore.countDown();
            }

            if (this.latch != null) {
                this.latch.countDown();
            }
        }

    }

    /**
     * 封裝單例的靜態內部類
     * 
     * @author bingo
     * @since 2018/11/29
     *
     */
    private static class Singleton {

        private static ZooKeeperSession instance;

        static {
            instance = new ZooKeeperSession();
        }

        public static ZooKeeperSession getInstance() {
            return instance;
        }

    }

    /**
     * 獲取單例
     * 
     * @return
     */
    public static ZooKeeperSession getInstance() {
        return Singleton.getInstance();
    }

    /**
     * 初始化單例的便捷方法
     */
    public static void init() {
        getInstance();
    }

}
也可以採用另一種方式,創建臨時順序節點:

如果有一把鎖,被多個人給競爭,此時多個人會排隊,第一個拿到鎖的人會執行,然後釋放鎖;後面的每個人都會去監聽排在自己前面的那個人創建的 node 上,一旦某個人釋放了鎖,排在自己後面的人就會被 zookeeper 給通知,一旦被通知了之後,就 ok 了,自己就獲取到了鎖,就可以執行代碼了。

public class ZooKeeperDistributedLock implements Watcher {

    private ZooKeeper zk;
    private String locksRoot = "/locks";
    private String productId;
    private String waitNode;
    private String lockNode;
    private CountDownLatch latch;
    private CountDownLatch connectedLatch = new CountDownLatch(1);
    private int sessionTimeout = 30000;

    public ZooKeeperDistributedLock(String productId) {
        this.productId = productId;
        try {
            String address = "192.168.31.187:2181,192.168.31.19:2181,192.168.31.227:2181";
            zk = new ZooKeeper(address, sessionTimeout, this);
            connectedLatch.await();
        } catch (IOException e) {
            throw new LockException(e);
        } catch (KeeperException e) {
            throw new LockException(e);
        } catch (InterruptedException e) {
            throw new LockException(e);
        }
    }

    public void process(WatchedEvent event) {
        if (event.getState() == KeeperState.SyncConnected) {
            connectedLatch.countDown();
            return;
        }

        if (this.latch != null) {
            this.latch.countDown();
        }
    }

    public void acquireDistributedLock() {
        try {
            if (this.tryLock()) {
                return;
            } else {
                waitForLock(waitNode, sessionTimeout);
            }
        } catch (KeeperException e) {
            throw new LockException(e);
        } catch (InterruptedException e) {
            throw new LockException(e);
        }
    }

    public boolean tryLock() {
        try {
 		    // 傳入進去的locksRoot + “/” + productId
		    // 假設productId代表了一個商品id,比如說1
		    // locksRoot = locks
		    // /locks/10000000000,/locks/10000000001,/locks/10000000002
            lockNode = zk.create(locksRoot + "/" + productId, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
   
            // 看看剛創建的節點是不是最小的節點
	 	    // locks:10000000000,10000000001,10000000002
            List<String> locks = zk.getChildren(locksRoot, false);
            Collections.sort(locks);
	
            if(lockNode.equals(locksRoot+"/"+ locks.get(0))){
                //如果是最小的節點,則表示取得鎖
                return true;
            }
	
            //如果不是最小的節點,找到比自己小1的節點
	  int previousLockIndex = -1;
            for(int i = 0; i < locks.size(); i++) {
		if(lockNode.equals(locksRoot +/+ locks.get(i))) {
	         	    previousLockIndex = i - 1;
		    break;
		}
	   }
	   
	   this.waitNode = locks.get(previousLockIndex);
        } catch (KeeperException e) {
            throw new LockException(e);
        } catch (InterruptedException e) {
            throw new LockException(e);
        }
        return false;
    }

    private boolean waitForLock(String waitNode, long waitTime) throws InterruptedException, KeeperException {
        Stat stat = zk.exists(locksRoot + "/" + waitNode, true);
        if (stat != null) {
            this.latch = new CountDownLatch(1);
            this.latch.await(waitTime, TimeUnit.MILLISECONDS);
            this.latch = null;
        }
        return true;
    }

    public void unlock() {
        try {
            // 刪除/locks/10000000000節點
            // 刪除/locks/10000000001節點
            System.out.println("unlock " + lockNode);
            zk.delete(lockNode, -1);
            lockNode = null;
            zk.close();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (KeeperException e) {
            e.printStackTrace();
        }
    }

    public class LockException extends RuntimeException {
        private static final long serialVersionUID = 1L;

        public LockException(String e) {
            super(e);
        }

        public LockException(Exception e) {
            super(e);
        }
    }
}

二.redis 分佈式鎖和 zk 分佈式鎖的對比

  • redis 分佈式鎖,其實需要自己不斷去嘗試獲取鎖,比較消耗性能。
  • zk 分佈式鎖,獲取不到鎖,註冊個監聽器即可,不需要不斷主動嘗試獲取鎖,性能開銷較小。
  • 如果是 redis 獲取鎖的那個客戶端 出現 bug 掛了,那麼只能等待超時時間之後才能釋放鎖;而 zk 的話,因爲創建的是臨時 znode,只要客戶端掛了,znode 就沒了,此時就自動釋放鎖。
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章