Advanced Algorithm 聽課筆記(Useful Inequalities & Balls and Bins)

0x00 前言

作爲學術生涯的最後一門課,選了一門據說是最難的,上下來的感覺也確實是難得不行,不太懂……
決定照着ppt和上課的筆記整理一下,以此爭取達到複習的目的。
(意思是有些雖然寫出來了,但自己都不見得明白,有的部分存疑後續去詢問之後再做修改)

Useful Inequalities

在隨機算法的問題中有大量不等式常被使用,爲了在運用時能想得起來,有些甚至要背熟。

0x01 Union Bound

Randomized Algorithm - Chapter 3.2 (P45)
n個隨機事件各自發生的概率之和,不小於這n個事件中至少有一個發生的概率

Let EiE_i be a random event, then we have
Pr[i=1nEi]i=1nPr(Ei)Pr[\cup_{i=1}^{n}E_i] \le \sum_{i=1}^{n}Pr(E_i)

0x02 馬爾可夫不等式 (Markov Inequality)

Let YY be a random variable assuming only non-negative values. Then
for all t>0, Pr[Yt]E[Y]t\text{for all } t>0,~Pr[Y \ge t]\le \frac{E[Y]}{t}

0x03 切比雪夫不等式 (Chebyshev’s Inequality)

Let XX be a random variable with expectation μX\mu_X and standard deviation σX\sigma_X, then
for any t>0, Pr[XμXtσX]1t2\text{for any }t>0,~Pr[|X-\mu_X|\ge t\sigma_X] \le \frac{1}{t^2}

0x04 切爾諾夫約束 (Chernoff’s Bound)

Randomized Algorithm - Chapter 4.1 (P67)
切爾諾夫約束有三種表現方式,在多個獨立的泊松實驗中

Let X1,X2, ,XnX_1, X_2, \cdots, X_n be independent Poisson trials such that,
for 1in, Pr[Xi=1]=pi1 \le i \le n,~Pr[X_i=1]=p_i, where 0<pi<10<p_i<1. Then

Chernoff’s Bound(1)

for X=i=1nXi, μ=E[X]=i=1npi, and any δ>0,\text{for }X=\sum_{i=1}^{n}X_i,~\mu=E[X]=\sum_{i=1}^{n}p_i, \text{ and any } \delta>0,
Pr[X>(1+δ)μ]<[eδ(1+δ)(1+δ)]μPr[X>(1+\delta)\mu]<\left[ \frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \right]^{\mu}

Chernoff’s Bound(2)

for X=i=1nXi, μ=E[X]=i=1npi, and any 0<δ<1,\text{for }X=\sum_{i=1}^{n}X_i,~\mu=E[X]=\sum_{i=1}^{n}p_i, \text{ and any } 0<\delta<1,
Pr[X<(1δ)μ]<[eδ(1δ)(1δ)]μPr[X<(1-\delta)\mu]<\left[ \frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}} \right]^{\mu}

Chernoff’s Bound(3)

for X=i=1nXi, μ=E[X]=i=1npi, and any 0<δ<1,\text{for }X=\sum_{i=1}^{n}X_i,~\mu=E[X]=\sum_{i=1}^{n}p_i, \text{ and any } 0<\delta<1,
Pr[Xμ>δμ]<2eδ23μPr[|X-\mu| >\delta\mu]<2e^{-\frac{\delta^2}{3}\mu}

0x05 Prove in detail

Chebyshev’s Inequality in 0x03

Let XX be a random variable with expectation μX\mu_X and standard deviation σX\sigma_X, then
for any t>0, Pr[XμXtσX]1t2\text{for any }t>0,~Pr[|X-\mu_X|\ge t\sigma_X] \le \frac{1}{t^2}

Pr(XμXtσX)=Pr((XμX)2(tσX)2)set Y(XμX)20Pr(Y(tσ)2)E(Y)(tσX)2E(Y)=E((XμX)2)=σX2Pr(Y(tσ)2)σX2(tσX)2=1t2 \begin{aligned} Pr \left( |X-\mu_X| \ge t\sigma_X \right) \\ = Pr \left( (X-\mu_X)^2 \ge (t\sigma_X)^2 \right) \\ \textbf{set } Y \triangleq (X-\mu_X)^2 \ge 0 \\ Pr \left( Y \ge (t\sigma)^2 \right) \le \frac{E(Y)}{(t\sigma_X)^2} \\ \because E(Y) = E\left( (X-\mu_X)^2 \right) = \sigma_X^2 \\ \therefore Pr \left( Y \ge (t\sigma)^2 \right) \le \frac{\sigma_X^2}{(t\sigma_X)^2} = \frac{1}{t^2} \\ \end{aligned}

Chernoff’s Bound in 0x04

Let X1,X2, ,XnX_1, X_2, \cdots, X_n be independent Poisson trials such that,
for 1in, Pr[Xi=1]=pi1 \le i \le n,~Pr[X_i=1]=p_i, where 0<pi<10<p_i<1. Then

Chernoff’s Bound(1)

for X=i=1nXi, μ=E[X]=i=1npi, and any δ>0,\text{for }X=\sum_{i=1}^{n}X_i,~\mu=E[X]=\sum_{i=1}^{n}p_i, \text{ and any } \delta>0,
Pr[X>(1+δ)μ]<[eδ(1+δ)(1+δ)]μPr[X>(1+\delta)\mu]<\left[ \frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \right]^{\mu}

對於隨機變量 (RandomVariable):

R.V. x1,x2, ,xnPr(Xi=1)=pi,Pr(Xi=0)=1piμ=i=1npi,X=i=1nxi,E(X)=μPr(X>(1+δ)μ)E(X)(1+δ)μ=11+δ= Pr(eλX>eλ(1+δ)μ)E(eλX)eλ(1+δ)μeμ(eλ1)eλ(1+δ)μ \begin{aligned} & R.V. ~x_1, x_2, \cdots, x_n \\ & Pr(X_i=1) = p_i, Pr(X_i=0) = 1-p_i \\ & \mu = \sum_{i=1}^{n}p_i, X = \sum_{i=1}^{n}x_i, E(X)=\mu \\ & Pr(X>(1+\delta)\mu) \le \frac{E(X)}{(1+\delta)\mu} = \frac{1}{1+\delta} \\ =~& Pr(e^{\lambda X}>e^{\lambda(1+\delta)\mu}) \le \frac{E(e\lambda X)}{e^{\lambda(1+\delta)\mu}}\le \frac{e^{\mu(e^{\lambda}-1)}}{e^{\lambda(1+\delta)\mu}} \\ \end{aligned}

λ=ln(1+δ)\lambda = ln(1+\delta),則上式化爲(eδ(1+δ)(1+δ))μ\left( \frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \right)^{\mu},得證。

Chernoff’s Bound(2)

for X=i=1nXi, μ=E[X]=i=1npi, and any 0<δ<1,\text{for }X=\sum_{i=1}^{n}X_i,~\mu=E[X]=\sum_{i=1}^{n}p_i, \text{ and any } 0<\delta<1,
Pr[X<(1δ)μ]<[eδ(1δ)(1δ)]μPr[X<(1-\delta)\mu]<\left[ \frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}} \right]^{\mu}

其中:

E(eλX)=E(eλ(i=1nXi))=E(i=1neλXi)=i=1nE(eλXi)=i=1n(pieλ+(1pi))=i=1n(1+pi(eλ1))=eμ(eλ1) \begin{aligned} E(e^{-\lambda X}) &= E(e^{-\lambda(\sum_{i=1}^{n}X_i)}) \\ &= E(\prod_{i=1}^{n} e^{-\lambda X_i}) = \prod_{i=1}^{n}E(e^{-\lambda X_i}) \\ &= \prod_{i=1}^{n}(p_i \cdot e^{-\lambda} + (1-p_i)) \\ &= \prod_{i=1}^{n}( 1 + p_i (e^{-\lambda}-1)) \\ &= e^{\mu(e^{-\lambda}-1)} \end{aligned}

代入原式子, 有:

Pr[X<(1δ)μ]E(eλX)eλ(1δ)μ=eμ(eλ1)eλ(1δ)μ=eμ(eλ1+λλδ) \begin{aligned} Pr[X < (1-\delta)\mu] &\le \frac{E(e^{-\lambda X})}{e^{-\lambda (1-\delta) \mu}} \\ &= \frac{e^{\mu(e^{-\lambda}-1)}}{e^{-\lambda (1-\delta) \mu}} \\ &= e^{\mu(e^{-\lambda}-1+\lambda-\lambda\delta)} \end{aligned}

f(λ)=eλ1+λλδf(\lambda) = e^{-\lambda}-1+\lambda-\lambda\delta,
f(λ)=eλ+1δ=0f'(\lambda) = -e^{-\lambda} + 1 - \delta = 0 時, λ=ln(1δ)\lambda = -\ln (1-\delta)
Pr[X<(1δ)μ]<eμf(ln(1δ))=(eδ(1δ)(1δ))μPr[X<(1-\delta)\mu] < e^{\mu f(-ln(1-\delta))} = \left( \frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}} \right)^{\mu}

Chernoff’s Bound(3)

for X=i=1nXi, μ=E[X]=i=1npi, and any 0<δ<1,\text{for }X=\sum_{i=1}^{n}X_i,~\mu=E[X]=\sum_{i=1}^{n}p_i, \text{ and any } 0<\delta<1,
Pr[Xμ>δμ]<2eδ23μPr[|X-\mu| >\delta\mu]<2e^{-\frac{\delta^2}{3}\mu}

首先去掉絕對值符號:
Pr[Xμ>δμ]=Pr[Xμ>δμ]+Pr[Xμ<δμ]Pr[|X-\mu| > \delta\mu] = Pr[X-\mu > \delta\mu] + Pr[X-\mu < -\delta\mu]
對於第一個部分:
Pr[Xμ>δμ]=Pr[X>(δ+1)μ]<(eδ(1+δ)(1+δ))μ=eμ(δ(1+δ)ln(1+δ))<e3δ2μ \begin{aligned} Pr[X-\mu > \delta\mu] &= Pr[X > (\delta+1)\mu] \\ &< \left( \frac{e^{\delta}}{(1+\delta)^{(1+\delta)}} \right)^{\mu} \\ &= e^{\mu \cdot (\delta - (1+\delta) \ln (1+\delta))} \\ &< e^{-\frac{3}{\delta^2}\mu} \end{aligned}
同理可證 Pr[Xμ<δμ]<e3δ2μPr[X-\mu < -\delta\mu] < e^{-\frac{3}{\delta^2}\mu}
Pr[Xμ>δμ]=Pr[Xμ>δμ]+Pr[Xμ<δμ]<e3δ2μ+e3δ2μ=2e3δ2μ \begin{aligned} Pr[|X-\mu| > \delta\mu] &= Pr[X-\mu > \delta\mu] + Pr[X-\mu < -\delta\mu] \\ &< e^{-\frac{3}{\delta^2}\mu} + e^{-\frac{3}{\delta^2}\mu} \\ &= 2e^{-\frac{3}{\delta^2}\mu} \end{aligned}
Pr[Xμ>δμ]<2e3δ2μPr[|X-\mu|>\delta\mu]<2e^{-\frac{3}{\delta^2}\mu} 得證

Balls and Bins

原先以爲往盒子裏放球取球只是個抽屜原理或者排列組合的問題,
高等算法裏把這研究得還要更深刻一些……

0x01 Balls and Bins

mm balls, nn bins. You randomly throw each ball to some bin.
XiX_i : number of balls in the ii-th bin.
Let kmax(X1,X2, ,Xn)k \triangleq max(X_1, X_2, \cdots, X_n).
Question: expectation and distribution of kk?

  • m=o(n)m = o(\sqrt{n}); (Case 1)
    • prove Pr(k>1)=o(1)Pr(k>1)=o(1).
    • k=1 w.h.pk=1~w.h.p
  • m=Θ(n)m = \Theta(\sqrt{n}); (Case 2, Birthday Paradox)
    • compute Pr(k>1)Pr(k>1) again.
    • k=1 or 2 w.h.pk=1~or~2~w.h.p
  • m=nm=n; (Case 3)
    • find suitable xx, such that Pr(kx)=1o(1)Pr(k \le x)=1-o(1)
    • k=Θ(lnnlnlnn) w.h.pk=\Theta(\frac{\ln n}{\ln \ln n})~w.h.p
  • mnlnnm \ge n\ln n; (Case 4)
    • k=Θ(mn) w.h.pk=\Theta (\frac{m}{n})~w.h.p

0xFF Prove in detail

Case 1

  • m=o(n)m = o(\sqrt{n})
  • prove Pr(k>1)=o(1)Pr(k>1)=o(1).

  • k=1 w.h.pk=1~w.h.p

  • m=1,Pr(k=1)=1o(1)m=1, Pr(k=1) = 1-o(1)

  • m=2,{Pr(k=1)=11/nPr(k=2)=1/nm=2, \begin{cases} Pr(k=1)=1-1/n \\ Pr(k=2)=1/n \end{cases}

  • m=? ,Pr(k=1)=1o(1)m= ? ~, Pr(k=1)=1-o(1)

對於這個 Pr(k=1)=1o(1)Pr(k=1)=1-o(1),我們可以等價地視作:
Pr(max(X1,X2, ,Xn)2)=o(1)Pr(max(X_1, X_2, \cdots, X_n)\ge 2) = o(1)

那麼,根據 Useful Inequalities 中提到過的 Union Bound,有:
Pr(X12 or X22 or  or Xn2) i=1nPr(Xi2)=nPr(X12) \begin{aligned} Pr(X_1 \ge 2~or~X_2 \ge 2~or~\cdots~or~X_n \ge 2) ~&\le \sum_{i=1}^{n}Pr(X_i \ge 2) \\ & = n \cdot Pr(X_1 \ge 2) \end{aligned}

其中,
Pr(X12) (m2)(1n)2=Θ(m2n2)Pr(X12) =k=2mPr(X1=k)=k=2m(mk)(1n)k(11n)mk=1Pr(X1=0)Pr(X1=1)=1(11n)mm1n(11n)m1=Θ(m2n2) \begin{aligned} Pr(X_1 \ge 2) ~&\le \binom{m}{2} \left(\frac{1}{n} \right)^2 = \Theta(\frac{m^2}{n^2}) \\ Pr(X_1 \ge 2) ~&= \sum_{k=2}^{m}Pr(X_1=k) \\ &= \sum_{k=2}^{m} \binom{m}{k}\cdot(\frac{1}{n})^k(1-\frac{1}{n})^{m-k} \\ &= 1- Pr(X_1=0) - Pr(X_1=1) \\ &= 1-(1-\frac{1}{n})^m - m\cdot \frac{1}{n} \cdot (1-\frac{1}{n})^{m-1} \\ & = \Theta(\frac{m^2}{n^2}) \end{aligned}

代入原式子,故有:
nPr(X12)=Θ(m2/n)=o(1)m=o(n) n \cdot Pr(X_1 \ge 2) = \Theta(m^2/n) = o(1) \\ \therefore m = o(\sqrt{n})

Case 2

  • m=Θ(n)m = \Theta(\sqrt{n}); (Birthday Paradox)
    + compute Pr(k>1)Pr(k>1) again.
    + k=1 or 2 w.h.pk=1~or~2~w.h.p

m=Θ(n) =cnPr(X12) (m2)(1n)2c22nPr(k>1) nPr(X12)c22Pr(k=1) =n1nn2nn3nnm+1n=Pr(E1Em) ,EiPr(E1)Pr(E2E1)Pr(E3E1E2)=(11n)(12n)(13n)(1m1n) \begin{aligned} m = \Theta(\sqrt{n})~&=c\sqrt{n} \\ Pr(X_1 \ge 2) ~&\le \binom{m}{2} \left(\frac{1}{n} \right)^2 \approx \frac{c^2}{2n} \\ Pr(k > 1) ~&\le n \cdot Pr(X_1 \ge 2) \le \frac{c^2}{2} \\ Pr(k = 1) ~& = \frac{n-1}{n} \cdot \frac{n-2}{n} \cdot \frac{n-3}{n} \cdots \frac{n-m+1}{n} \\ &= Pr(E_1 \cdots E_m) ~, E_i \triangleq Pr(E_1)Pr(E_2|E_1)Pr(E_3|E_1E_2)\cdots \\ &= (1-\frac{1}{n}) \cdot (1-\frac{2}{n}) \cdot (1-\frac{3}{n}) \cdots (1-\frac{m-1}{n}) \end{aligned}

根據 Union Bound:
Pr(k=1) =(11n)(12n)(13n)(1m1n)(1m1n)m1     (Union Bound)(1m1n)nm1(m1)2n(1e)m2n \begin{aligned} Pr(k = 1) ~&= (1-\frac{1}{n}) \cdot (1-\frac{2}{n}) \cdot (1-\frac{3}{n}) \cdots (1-\frac{m-1}{n})\\ &\ge (1-\frac{m-1}{n})^{m-1} ~~~~\textbf{ (Union Bound)} \\ &\sim (1-\frac{m-1}{n})^{\frac{n}{m-1}\cdot{\frac{(m-1)^2}{n}}} \sim (\frac{1}{e})^{\frac{m^2}{n}} \end{aligned}

又因爲 1xex1-x \le e^{-x}:
(11n)(12n)(13n)(1m1n) e1/ne2/ne3/ne(m1)/n em2/2n<1 Pr(k2)=1Pr(k=1)1ec2/2 \begin{aligned} &(1-\frac{1}{n}) \cdot (1-\frac{2}{n}) \cdot (1-\frac{3}{n}) \cdots (1-\frac{m-1}{n}) \\ \le~ & e^{-1/n} \cdot e^{-2/n} \cdot e^{-3/n} \cdots e^{-(m-1)/n} \\ \approx~ & e^{-m^2/2n} < 1 \\ \therefore ~ & Pr(k \ge 2) = 1 - Pr(k = 1) \ge 1- e^{-c^2/2} \end{aligned}

而對於 k3k \ge 3時:
(這段的板書順序較爲混亂,資質愚鈍足足半個小時仍無法看懂,暫且擱置)

Prepare for case 3

爲了 case 3 的證明,我們需要事先準備一個階乘的近似界
(mx)x(mx)(emx)x(\frac{m}{x})^x \le \binom{m}{x} \le (\frac{em}{x})^x

先證 (mx)=m!x!(mx)!mxx!\tbinom{m}{x} = \frac{m!}{x!(m-x)!} \sim \frac{m^x}{x!}
limm(mx)mxx!=limmm(m1)(m2)(mx+1)mx=limm1(11m)(12m)(1x1m)=1 \begin{aligned} \lim\limits_{m \rightarrow \infty}\frac{\tbinom{m}{x}}{\frac{m^x}{x!}} &= \lim\limits_{m \rightarrow \infty}\frac{m(m-1)(m-2)\cdots(m-x+1)}{m^x} \\ &= \lim\limits_{m \rightarrow \infty} 1\cdot(1-\frac{1}{m})(1-\frac{2}{m})\cdots(1-\frac{x-1}{m}) \\ &= 1 \end{aligned}

這裏,我們需要引入階乘的逼近公式:斯特林公式(Stirling’s formula):
n!2πn(ne)nn! \sim \sqrt{2 \pi n}(\frac{n}{e})^n

mxx!mx2πx(xe)x=exmx2πxxx=ex2πx(mx)x(emx)x \frac{m^x}{x!} \sim \frac{m^x}{\sqrt{2\pi x}(\frac{x}{e})^x}=\frac{e^xm^x}{\sqrt{2\pi x}x^x}=\frac{e^x}{\sqrt{2\pi x}}(\frac{m}{x})^x \le (\frac{em}{x})^x
並且
ex2πx>1\frac{e^x}{\sqrt{2\pi x}} > 1
所以
ex2πx(mx)x(mx)x\frac{e^x}{\sqrt{2\pi x}}(\frac{m}{x})^x \ge (\frac{m}{x})^x

(mx)x(mx)(emx)x(\frac{m}{x})^x \le \binom{m}{x} \le (\frac{em}{x})^x

Case 3

  • m=nm=n
    + find suitable xx, such that Pr(kx)=1o(1)Pr(k \le x)=1-o(1)
    + k=Θ(lnnlnlnn) w.h.pk=\Theta(\frac{\ln n}{\ln \ln n})~w.h.p

x=lnnlnlnnx = \frac{\ln n}{\ln ln n},先證下界:
Pr(kx)=1o(1)Pr(k \le x) = 1-o(1)

即證:
Pr(kx)=o(1)Pr(k \ge x) = o(1)

於是,根據 Union Bound 有:
Pr(kx)nPr(X1x)n(mx)(1n)x=n(nx)(1n)xPr(k \ge x) \le n \cdot Pr(X_1 \ge x) \le n \cdot \binom{m}{x}\left( \frac{1}{n} \right)^x = n \cdot \binom{n}{x}\left( \frac{1}{n} \right)^x

上一小節我們通過 斯特林公式(Stirling’s formula) 得到:
(mx)x(mx)(emx)x(\frac{m}{x})^x \le \binom{m}{x} \le (\frac{em}{x})^x

代入,有:
n(nx)(1n)xn(enx)x(1n)x=n(ex)x=o(1)n \cdot \binom{n}{x}\left( \frac{1}{n} \right)^x \le n\cdot \left( \frac{en}{x} \right)^x \left( \frac{1}{n} \right)^x = n\cdot \left( \frac{e}{x} \right)^x = o(1)

再證上界:
Pr(kcx)=1o(1)Pr(k \ge c \cdot x) = 1-o(1)

即證:
Pr(kcx)=Pr(E1En)Pr(k \le c \cdot x) = Pr(E_1 \land \cdots \land E_n)

其中,EiE_i 表示:
xicx, Yi={1, Ei 沒發生0, Ei 發生x_i \le c \cdot x,~Y_i=\begin{cases} 1, ~E_i\text{ 沒發生}\\ 0, ~E_i\text{ 發生} \end{cases}

則有:
Pr(kcx)=Pr(kcx)=Pr(i,Yi=0)=Pr(i=1nYi=0)Pr(k \le c \cdot x) = Pr(k \le c \cdot x)=Pr(\forall i, Y_i=0) = Pr(\sum_{i=1}^{n}Y_i=0)

而上式不大於:
Pr(i=1nE(i=1nYi)E(i=1nYi))σ2(i=1nYi)(E(i=1nYi))2Pr \left( \left|\sum_{i=1}^{n} - E(\sum_{i=1}^{n}Y_i) \right| \ge E(\sum_{i=1}^{n}Y_i) \right) \le \frac{\sigma^2(\sum_{i=1}^{n}Y_i)}{(E(\sum_{i=1}^{n}Y_i))^2}

(期望與方差的推導較長,暫時擱置,事後有時間再補), 故:
Pr(k<cx)=Pr(Y1+Y2++Yn=0)Pr(k<cx)=Pr(Y_1+Y_2+\cdots+Y_n=0)
Var(i=1nYi)E2(i=1nYi)=O(n(n1c)2)1n1/3,   c=1/3\le \frac{Var(\sum_{i=1}^{n}Y_i)}{E^2(\sum_{i=1}^{n}Y_i)} = O\left(\frac{n}{(n^{1-c})^2}\right) \sim \frac{1}{n^{1/3}},~~~\therefore c=1/3

lnn3lnlnn<k<lnnlnlnn\frac{\ln n}{3\ln\ln n}<k<\frac{\ln n}{\ln\ln n}

Consider the case with nn balls and nn bins,
let XX be the random variable of the number of empty bins. Compute E(X)E(X), and the deviation between XX and E(X)E(X).
the result should be in the form Pr(XE(X)>a)<bPr(|X-E(X)|>a)<b

ZiZ_i 表示第 ii 個盒子裏是否沒有球: 沒有球時爲 Zi=1Z_i=1,反之爲 Zi=0Z_i=0
則有
Y=i=1nZiY=\sum_{i=1}^{n}Z_i
E(Y)=E(i=1nZi)=i=1nE(Zi)=nE(Z1)E(Y)=E(\sum_{i=1}^{n}Z_i)=\sum_{i=1}^{n}E(Z_i)=nE(Z_1)
其中
E(Z1)=p(Z1=0)1+p(Z1=1)0=1(11n)n=1e1E(Z_1)=p(Z_1=0)\cdot 1 + p(Z_1=1)\cdot 0 = 1 - (1-\frac{1}{n})^n = 1-e^{-1}
所以
E(X)=E(nY)=nE(Y)=e1nE(X) = E(n-Y) = n-E(Y) = e^{-1}n
對於 λ>0\lambda > 0
μ=E[Z]=n(11n)nne1\mu = E[Z] = n(1-\frac{1}{n})^n \sim ne^{-1}
Pr[Zμλ]2exp(λ22n)Pr[|Z-\mu|\ge \lambda]\le 2\cdot exp(-\frac{\lambda^2}{2n})

特別地, 當 mnm \gg n 時:
μ=E[Z]=n(11n)mnem/n\mu = E[Z] = n(1-\frac{1}{n})^m \sim ne^{-m/n}
Pr[Zμλ]2exp(λ2(n1/2)n2μ2)Pr[|Z-\mu|\ge \lambda]\le 2\cdot exp(-\frac{\lambda^2(n-1/2)}{n^2-\mu^2})

Case 4

  • mnlnnm \ge n\ln n
    + k=Θ(mn) w.h.pk=\Theta (\frac{m}{n})~w.h.p

要證:
Pr(kcmn)=o(1)Pr(k \ge c \cdot \frac{m}{n}) = o(1)

即證:
Pr(x1cmn  or  x2cmn  or  or  xncmn)Pr(x_1 \ge c\frac{m}{n}~~or~~x_2 \ge c\frac{m}{n}~~or~\cdots~or~~x_n \ge c\frac{m}{n})

而根據 Union Bound
Pr(kcmn)nPr(x1cmn)Pr(k \ge c \cdot \frac{m}{n}) \le n \cdot Pr(x_1 \ge c \frac{m}{n})

先證上界:
Pr(x1cmn)(mcmn)(1n)cmn(emcmn)cmn(1n)cmn=(ec)cmnPr \left(x_1 \ge c\frac{m}{n} \right) \le \binom{m}{c\frac{m}{n}} \left( \frac{1}{n} \right)^{c\frac{m}{n}} \le \left( \frac{em}{c\frac{m}{n}} \right)^{c\frac{m}{n}} \left( \frac{1}{n} \right)^{c\frac{m}{n}} = \left( \frac{e}{c} \right)^{c\frac{m}{n}}

由於 mnlnnm \ge n\ln n
Pr(kcmn)=(ec)cmn(ec)clnn=o(1/n)Pr(k \ge c\frac{m}{n})= \left( \frac{e}{c} \right)^{c\frac{m}{n}} \le \left( \frac{e}{c} \right)^{c\ln n} = o(1/n)

再證下界,根據 Chernoff’s Bound:
Pr(Y1++YnE(Y1++Yn)) ?Pr\left( \left| Y_1 + \cdots + Y_n - E(Y_1 + \cdots + Y_n) \right| \right) \le~?

其中,YiY_iii-th ball 扔進了第一個盒子, X1=i=1mYi,  Yi={1,  1/n0,  11/nX_1 = \sum_{i=1}^{m}Y_i,~~Y_i=\begin{cases} 1,~~1/n \\ 0,~~1-1/n \end{cases}

Pr(X1m/n>c1mn)2exp(c123mn)2exp(c123lnn)=21nc123=o(1n)Pr( |X_1 - m/n| > c_1\frac{m}{n} ) \le 2 \cdot exp(-\frac{c_1^2}{3}\cdot\frac{m}{n}) \le 2\cdot exp(-\frac{c_1^2}{3}\ln n) = 2 \frac{1}{n^{\frac{c1^2}{3}}} = o(\frac{1}{n})

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章