6篇博文带你走进机器学习大门【二】K-近邻算法

1 K-NN 近邻算法

1.1 定义

如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

  • K-近邻算法API

  • sklearn.neighbors.KNeighborsClassifier(n_neighbors=5)

    • n_neighbors:int,可选(这是个超参数,默认= 5),

1.2 距离度量

  • 欧式距离(Euclidean Distance)
  • 曼哈顿距离(Manhattan Distance)
  • 切比雪夫距离 (Chebyshev Distance)
  • 闵可夫斯基距离(Minkowski Distance)

其中p是一个变参数:

当p=1时,就是曼哈顿距离;

当p=2时,就是欧氏距离;

当p→∞时,就是切比雪夫距离。

根据p的不同,闵氏距离可以表示某一类/种的距离。

小结:

闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点:

e.g. 二维样本(身高[单位:cm],体重[单位:kg]),现有三个样本:a(180,50),b(190,50),c(180,60)。

a与b的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c的闵氏距离。但实际上身高的10cm并不能和体重的10kg划等号。

闵氏距离的缺点

(1)将各个分量的量纲(scale),也就是“单位”相同的看待了;

(2)未考虑各个分量的分布(期望,方差等)可能是不同的。

  • 标准化欧氏距离 (Standardized EuclideanDistance)

标准化欧氏距离是针对欧氏距离的缺点而作的一种改进。

思路:既然数据各维分量的分布不一样,那先将各个分量都“标准化”到均值、方差相等。假设样本集X的均值(mean)为m,标准差(standard deviation)为s,X的“标准化变量”表示为:

  • 余弦距离(Cosine Distance)

1.3 kd树

  • 什么是kd树

为了避免每次都重新计算一遍距离,算法会把距离信息保存在一棵树里,这样在计算之前从树里查询距离信息,尽量避免重新计算。

  • 构造方法

(1)构造根结点,使根结点对应于K维空间中包含所有实例点的超矩形区域;

(2)通过递归的方法,不断地对k维空间进行切分,生成子结点。在超矩形区域上选择一个座标轴和在此座标轴上的一个切分点,确定一个超平面,这个超平面通过选定的切分点并垂直于选定的座标轴,将当前超矩形区域切分为左右两个子区域(子结点);这时,实例被分到两个子区域。

(3)上述过程直到子区域内没有实例时终止(终止时的结点为叶结点)。在此过程中,将实例保存在相应的结点上。

(4)通常,循环的选择座标轴对空间切分,选择训练实例点在座标轴上的中位数为切分点,这样得到的kd树是平衡的(平衡二叉树:它是一棵空树,或其左子树和右子树的深度之差的绝对值不超过1,且它的左子树和右子树都是平衡二叉树)。

KD树中每个节点是一个向量,和二叉树按照数的大小划分不同的是,KD树每层需要选定向量中的某一维,然后根据这一维按左小右大的方式划分数据。在构建KD树时,关键需要解决2个问题:

(1)选择向量的哪一维进行划分;

(2)如何划分数据;

第一个问题简单的解决方法可以是随机选择某一维或按顺序选择,但是更好的方法应该是在数据比较分散的那一维进行划分(分散的程度可以根据方差来衡量)。好的划分方法可以使构建的树比较平衡,可以每次选择中位数来进行划分,这样问题2也得到了解决。

1.4 特征工程-特征预处理

  1. 什么是特征预处理

通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程

  1. 归一化

  2. 标准化

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章