Flink流式框架的状态一致性

一、状态一致性

1)有状态的流处理,内部每个算子任务都可以有自己的状态;

2)对于流处理器内部来说,所谓的状态一致性,其实就是我们所说的计算结果要保证准确;

3)一条数据不应该丢失,也不应该重复计算;

4)在遇到故障时可以恢复状态,恢复以后进行重新计算,结果应该也是完全正确的;

 

1、状态一致性分类

(1)AT-MOST-ONCE(最多一次)

  》》当任务故障时,最简单的做法就是什么也不干,既不恢复丢失的状态,也不重播丢失的数据,At-most-once语义的含义是最多处理一次事件。

(2)AT-LEAST-ONCE(至少一次)

   》》在大多数的真实应用场景中,我们希望不丢失事件,这种类型的保障称为at-least-once,意思是所有的事件都得到了处理,而一些事件还可能被处理多次;

(3)EXACTLY-ONCE(精确一次)

   》》恰好处理一次是最严格的保证,也是最难实现的。恰好处理一次语义不仅仅意味着没有事件丢失,还意味着针对每一个数据,内部状态仅仅更新一次。

 

二、一致性检查点(checkpoint)

1)Flink使用了一种轻量级快照机制——检查点(checkpoint)来保证exactly-once语义;

2)有状态流应用的一致检查点,其实就是:所有任务的状态,在某个时间点的一份拷贝(一份快照)。而这个时间点,应该是所有任务都恰好处理完一个相同的输入数据的时候;

3)应用状态的一致检查点,是Flink故障恢复机制的核心;

 

三、端到端(end-to-end)状态一致性

1)目前我们看到的一致性保证都是由流处理器实现的,也就是说都是在Flink流处理器内部保证的;而在真实应用中,流处理应用除了流处理器以外还包含了数据源(例如:Kafka)和输出到持久化系统;

2)端到端的一致性保证,意味着结果的正确性贯穿了整个流处理应用的始终;每一个组件都保证了它自己的一致性;

3)整个端到端的一致性级别取决于所有组件中一致性最弱的组件;

 

四、端到端的精确一次(exactly-once)保证

1)内部保证——checkpoint;

2)source端——可重设数据的读取位置

3)sink端——从故障恢复时,数据不会重复写入外部系统

      》》幂等写入

      》》事务写入

 

1、幂等写入(Idempotent  Writes)

1)所谓幂等操作,是说一个操作,可以重复执行很多次,但只导致一次结果更改,也就是说,后面再重复执行就不起作用了;

 

2、事务写入(Transactional  Writes)

1)事务(Transaction)

      》》应用程序中一系列严密的操作,所有操作必须成功完成,否则在每个操作中所做的所有更改都会被撤销;

      》》具有原子性:一个事务中的一系列操作要么全部成功,要么一个都不做;

2)实现思想:构建的事务对应着checkpoint,等到checkpoint真正完成的时候,才把所有对应的结果写入sink系统中;

3)实现方式:预写日志、两阶段提交;

 

2.1   预写日志(Write-Ahead-Log,WAL)

1)把结果数据先当成状态保存,然后在收到checkpoint完成的通知时,一次性写入sink系统;

2)简单易于实现,由于数据提前在状态后端中做了缓存,所以无论什么sink系统,都能用这种方式一批搞定;

3)DataStream  API提供了一个模版类:GenericWriteAheadSink,来实现这种事务性sink;

 

2.2   两阶段提交(Two-Phase-Commit,2PC)

1)对于每个checkpoint,sink任务会启动一个事务,并将接下来所有接收的数据添加到事务里;

2)然后将这些数据写入外部sink系统,但不提交它们——这时只是“预提交”;

3)当它收到checkpoint完成的通知时,它才正式提交事务,实现结果的真正写入;

4)这种方式真正实现了exactly-once,它需要一个提供事务支持的外部sink系统。Flink提供了TwoPhaseCommitSinkFunction接口;

 

2.3  2PC对外部sink系统的要求

1)外部sink系统必须提供事务支持,或者sink任务必须能够模拟外部系统上的事务;

2)在checkpoint的间隔期间里,必须能够开启一个事务并接收数据写入;

3)在收到checkpoint完成的通知之前,事务必须是“等待提交”的状态。在故障恢复的情况下,这可能需要一些时间。如果这个时候sink系统关闭事务(例如:超时了),那么未提交的数据就会丢失;

4)sink任务必须能够在进程失败后恢复事务;

5)提交事务必须是幂等操作;

 

2.4  不同Source和Sink的一致性保证

source

sink

不可重置

可重置

任意(Any

At-most-once

At-least-once

幂等

At-most-once

Exactly-once

(故障恢复时会出现暂时不一致)

预写日志(WAL

At-most-once

At-least-once

两阶段提交(2PC

At-most-once

Exactly-once

 

五、Flink+Kafka端到端状态一致性的保证

1)内部——利用checkpoint机制,把状态存盘,发生故障的时候可以恢复,保证内部的状态一致性;

2)source——kafka  consumer作为source,可以将偏移量保存下来,如果后续任务出现了故障,恢复的时候可以由连接器重置偏移量,重新消费数据,保证一致性;

3)sink——kafka  producer作为sink,采用两阶段提交sink,需要实现一个TwoPhaseCommitSinkFunction;

 

1、Exactly-once两阶段提交

1)JobManager协调各个TaskManager进行checkpoint存储;

2)checkpoint保存在StateBackend中,默认StateBackend是内存级的,也可以改为文件级的进行持久化保存;

3)当checkpoint启动时,JobManager会将检查点分界线(barrier)注入数据流;

4)barrier会在算子间传递下去;

5)每个算子会对当前的状态做个快照,保存到状态后端;

6)checkpoint机制可以保证内部的状态一致性;

7)每个内部的transform任务遇到barrier时,都会把状态保存到checkpoint里面;

8)sink任务首先把数据写入外部kafka,这些数据都属于预提交的事务;遇到barrier时,把状态保存到状态后端,并开启新的预提交事务;

9)当所有算子任务的快照完成,也就是这次的checkpoint完成时,JobManager会向所有任务发通知,确认这次checkpoint完成;

10)sink任务收到确认通知,正式提交之前的事务,kafka中未确认数据改为“已确认”;

 

2、 Exactly-once两阶段提交步骤

1)第一条数据来了之后,开启一个kafka的事务(Transaction),正常写入kafka分区日志但标记为未提交,这就是“预提交”;

2)JobManager触发checkpoint操作,barrier从source开始向下传递,遇到barrier的算子将状态存入状态后端,并通知JobManager;

3)sink连接器收到barrier,保存当前状态,存入checkpoint,通知JobManager,并开启下一阶段的事务,用于提交下一个检查点的数据;

4)JobManager收到所有任务的通知,发出确认信息,表示checkpoint完成;

5)sink任务收到JobManager的确认信息,正式提交这段时间的数据;

6)外部Kafka关闭事务,提交的数据可以正常消费了;

 

 

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章