RT-Thread內核實現 --定時器和時間片的實現

定時器的實現

定時器的細節

  對於一個單片機,定時器通常是最基礎的功能。不過,這裏的定時器是基於硬件的定時器。依靠時鐘晶振,硬件電路來實現的。RT-Thread也有自己的定時器,這個定時器是由以下幾個部分構成:

  /**
  * Thread structure
  */
  struct rt_thread
  {
  .......
  	struct rt_timer thread_timer;                       /**< built-in thread timer */
  .......
  }
  /**
  *timer structure
  */
   struct rt_timer
  {
     struct rt_object parent;                            /**< inherit from rt_object */
 
     rt_list_t        row[RT_TIMER_SKIP_LIST_LEVEL];
     void (*timeout_func)(void *parameter);              /**< timeout function */
     void            *parameter;                         /**< timeout function's parameter */
     rt_tick_t        init_tick;                         /**< timer timeout tick */
     rt_tick_t        timeout_tick;                      /**< timeout tick */
  };
  typedef struct rt_timer *rt_timer_t;

  內嵌到線程控制塊之中,內嵌到線程之中是爲了實現RT-Thread中線程的一個狀態的實現掛起態(阻塞態),比如說我們要掛起一個線程。我們直接修改線程的狀態位,成功將線程掛起,然後修改remaining_tick,設置需要延時的時間。嗯嗯嗯~~貌似這樣也能行,不過這是之前的版本了。
  我梳理了一下定時器的使用:

  1. 定時器單獨使用
  2. 定時器嵌入線程中,用於掛起的
static void _rt_timer_init(rt_timer_t timer,
                           void (*timeout)(void *parameter),
                           void      *parameter,
                           rt_tick_t  time,
                           rt_uint8_t flag)
{
    int i;

    /* set flag */
    timer->parent.flag  = flag;

    /* set deactivated */
    timer->parent.flag &= ~RT_TIMER_FLAG_ACTIVATED;

    timer->timeout_func = timeout;
    timer->parameter    = parameter;

    timer->timeout_tick = 0;
    timer->init_tick    = time;

    /* initialize timer list */
    for (i = 0; i < RT_TIMER_SKIP_LIST_LEVEL; i++)
    {
        rt_list_init(&(timer->row[i]));
    }
}

就功能而言,rt_time功能複雜度更類似於rt_thread。超時函數類似於線程的入口函數.

定時器定時餘時檢索

/**
 * This function will check timer list, if a timeout event happens, the
 * corresponding timeout function will be invoked.
 *
 * @note this function shall be invoked in operating system timer interrupt.
 */
void rt_timer_check(void)
{
    struct rt_timer *t;
    rt_tick_t current_tick;
    register rt_base_t level;

    RT_DEBUG_LOG(RT_DEBUG_TIMER, ("timer check enter\n"));

    current_tick = rt_tick_get();

    /* disable interrupt */
    level = rt_hw_interrupt_disable();

    while (!rt_list_isempty(&rt_timer_list[RT_TIMER_SKIP_LIST_LEVEL - 1]))		//定時器列表不爲空,就掃描定時器列表
    {
        t = rt_list_entry(rt_timer_list[RT_TIMER_SKIP_LIST_LEVEL - 1].next,
                          struct rt_timer, row[RT_TIMER_SKIP_LIST_LEVEL - 1]);

        /*
         * It supposes that the new tick shall less than the half duration of
         * tick max.
         */
        if ((current_tick - t->timeout_tick) < RT_TICK_MAX / 2)	//這裏並不寫小於RT_TICK_MAX一定是有原因的,
        //設想,如果timeout_tick是大於RT_TICK_MAX / 2
        {
            RT_OBJECT_HOOK_CALL(rt_timer_timeout_hook, (t));

            /* remove timer from timer list firstly */
            _rt_timer_remove(t);

            /* call timeout function */
            t->timeout_func(t->parameter);

            /* re-get tick */
            current_tick = rt_tick_get();

            RT_DEBUG_LOG(RT_DEBUG_TIMER, ("current tick: %d\n", current_tick));

            if ((t->parent.flag & RT_TIMER_FLAG_PERIODIC) &&
                (t->parent.flag & RT_TIMER_FLAG_ACTIVATED))
            {
                /* start it */
                t->parent.flag &= ~RT_TIMER_FLAG_ACTIVATED;
                rt_timer_start(t);
            }
            else
            {
                /* stop timer */
                t->parent.flag &= ~RT_TIMER_FLAG_ACTIVATED;
            }
        }
        else
            break;
    }

    /* enable interrupt */
    rt_hw_interrupt_enable(level);

    RT_DEBUG_LOG(RT_DEBUG_TIMER, ("timer check leave\n"));
}

  RT-Thread中,設定了一個鏈表,static rt_list_t rt_timer_list[RT_TIMER_SKIP_LIST_LEVEL],這個鏈表存在的意義就是:縮減了查詢那麼多定時器所花費的時間。有了這一個鏈表,那麼只需要查詢一次便可以得知有沒有已經到達了時間的定時器。
  原因是:這個鏈表是有順序的,越靠近初始位的定時時間越短。

/**
 * This function will start the timer
 *
 * @param timer the timer to be started
 *
 * @return the operation status, RT_EOK on OK, -RT_ERROR on error
 */
rt_err_t rt_timer_start(rt_timer_t timer)
{
    unsigned int row_lvl;
    rt_list_t *timer_list;
    register rt_base_t level;
    rt_list_t *row_head[RT_TIMER_SKIP_LIST_LEVEL];
    unsigned int tst_nr;
    static unsigned int random_nr;

    /* timer check */
    RT_ASSERT(timer != RT_NULL);
    RT_ASSERT(rt_object_get_type(&timer->parent) == RT_Object_Class_Timer);

    /* stop timer firstly */
    level = rt_hw_interrupt_disable();
    /* remove timer from list */
    _rt_timer_remove(timer);
    /* change status of timer */
    timer->parent.flag &= ~RT_TIMER_FLAG_ACTIVATED;
    rt_hw_interrupt_enable(level);

    RT_OBJECT_HOOK_CALL(rt_object_take_hook, (&(timer->parent)));

    /*
     * get timeout tick,
     * the max timeout tick shall not great than RT_TICK_MAX/2
     */
    RT_ASSERT(timer->init_tick < RT_TICK_MAX / 2);
    timer->timeout_tick = rt_tick_get() + timer->init_tick;

    /* disable interrupt */
    level = rt_hw_interrupt_disable();

#ifdef RT_USING_TIMER_SOFT
    if (timer->parent.flag & RT_TIMER_FLAG_SOFT_TIMER)
    {
        /* insert timer to soft timer list */
        timer_list = rt_soft_timer_list;
    }
    else
#endif
	//獲取系統定時器列表的根節點地址
    {
        /* insert timer to system timer list */
        timer_list = rt_timer_list;
    }
	//獲取系統定時器列表第一條鏈表根節點地址
    row_head[0]  = &timer_list[0];
    //這裏的RT_TIMER_SKIP_LIST_LEVEL的大小定義並不在rtconfig.h文件中,寫就是不是常用來修改的,且常爲1,只執行一遍for循環這裏
    for (row_lvl = 0; row_lvl < RT_TIMER_SKIP_LIST_LEVEL; row_lvl++)
    {
    	//第一次進入rt_timer_start函數時,row_head[row_lvl] == timer_list[row_lvl].prev;也就是第一次不執行這個函數
    	//加入是第二次進入,那麼,由於不滿足函數體的條件會依次從第一項向下搜索
        for (; row_head[row_lvl] != timer_list[row_lvl].prev;
             row_head[row_lvl]  = row_head[row_lvl]->next)
        {
            struct rt_timer *t;
            rt_list_t *p = row_head[row_lvl]->next;

            /* fix up the entry pointer */
            t = rt_list_entry(p, struct rt_timer, row[row_lvl]);

            /* If we have two timers that timeout at the same time, it's
             * preferred that the timer inserted early get called early.
             * So insert the new timer to the end the the some-timeout timer
             * list.
             */
            if ((t->timeout_tick - timer->timeout_tick) == 0)
            {
                continue;
            }
            else if ((t->timeout_tick - timer->timeout_tick) < RT_TICK_MAX / 2)
            {
                break;
            }
        }
        ////等等我再想想這點吧
        if (row_lvl != RT_TIMER_SKIP_LIST_LEVEL - 1)
            row_head[row_lvl + 1] = row_head[row_lvl] + 1;
    }

    /* Interestingly, this super simple timer insert counter works very very
     * well on distributing the list height uniformly. By means of "very very
     * well", I mean it beats the randomness of timer->timeout_tick very easily
     * (actually, the timeout_tick is not random and easy to be attacked). */
    //這裏是爲了計算添加了幾個定時器
    random_nr++;
    tst_nr = random_nr;
	
	//剛纔找到了插入的位置,現在插入到鏈表中
    rt_list_insert_after(row_head[RT_TIMER_SKIP_LIST_LEVEL - 1],
                         &(timer->row[RT_TIMER_SKIP_LIST_LEVEL - 1]));
    //RT_TIMER_SKIP_LIST_LEVEL是等於1的,不會執行。
    //等等我再想想這點吧
    for (row_lvl = 2; row_lvl <= RT_TIMER_SKIP_LIST_LEVEL; row_lvl++)
    {
        if (!(tst_nr & RT_TIMER_SKIP_LIST_MASK))
            rt_list_insert_after(row_head[RT_TIMER_SKIP_LIST_LEVEL - row_lvl],
                                 &(timer->row[RT_TIMER_SKIP_LIST_LEVEL - row_lvl]));
        else
            break;
        /* Shift over the bits we have tested. Works well with 1 bit and 2
         * bits. */
        tst_nr >>= (RT_TIMER_SKIP_LIST_MASK + 1) >> 1;
    }

    timer->parent.flag |= RT_TIMER_FLAG_ACTIVATED;

    /* enable interrupt */
    rt_hw_interrupt_enable(level);

#ifdef RT_USING_TIMER_SOFT
    if (timer->parent.flag & RT_TIMER_FLAG_SOFT_TIMER)
    {
        /* check whether timer thread is ready */
        if ((timer_thread.stat & RT_THREAD_STAT_MASK) != RT_THREAD_READY)
        {
            /* resume timer thread to check soft timer */
            rt_thread_resume(&timer_thread);
            rt_schedule();
        }
    }
#endif

    return RT_EOK;
}
RTM_EXPORT(rt_timer_start);

  至於爲什麼定時器表的第一個的定時時間是最短,是因爲這個rt_timer_start函數來設置的。定時器的啓動都會經過這個函數,就像是線程啓動都會經過startup函數一樣;定時器啓動的函數就設置了這個定時器處於鏈表的哪一個位置。

硬定時器和軟定時器

  硬定時器和軟定時器的說法,你可能在視頻或者什麼裏見過。至少我當時是聽過的,我還記得他當時說,硬定時器的調度是在滴答定時器上的,軟定時器是軟定時上的,他們響應不是在同一個位置。
  通過參看源碼,也是這樣的,軟定時器是寫了一個定時線程,這個定時線程的優先級爲10,像是一個線程一樣。而硬件定時器,每一個滴答週期都會去檢索定時器表,以確定那個定時器已經到達時間。

/**
 * @ingroup SystemInit
 *
 * This function will initialize system timer thread
 */
void rt_system_timer_thread_init(void)
{
#ifdef RT_USING_TIMER_SOFT
    int i;

    for (i = 0;
         i < sizeof(rt_soft_timer_list) / sizeof(rt_soft_timer_list[0]);
         i++)
    {
        rt_list_init(rt_soft_timer_list + i);
    }

    /* start software timer thread */
    rt_thread_init(&timer_thread,
                   "timer",
                   rt_thread_timer_entry,
                   RT_NULL,
                   &timer_thread_stack[0],
                   sizeof(timer_thread_stack),
                   RT_TIMER_THREAD_PRIO,
                   10);

    /* startup */
    rt_thread_startup(&timer_thread);
#endif
}

時間片的實現

時間片的細節

  時間片,是爲了爲同一個優先級下有多個線程時使用的。線程在這個線程就緒表中,且有剩餘的時間片時間,纔可以繼續執行,類似於輪詢。工作狀態類似於輪詢,因爲看起來是每個都執行了。不過,就實況來看,輪詢是執行完週期,這裏是消耗自己的時間片時間。

/**
 * Thread structure
 */
struct rt_thread
{
···
	rt_ubase_t  init_tick;                              /**< thread's initialized tick */
    rt_ubase_t  remaining_tick;                         /**< remaining tick */
···
}
static rt_err_t _rt_thread_init(struct rt_thread *thread,
                                const char       *name,
                                void (*entry)(void *parameter),
                                void             *parameter,
                                void             *stack_start,
                                rt_uint32_t       stack_size,
                                rt_uint8_t        priority,
                                rt_uint32_t       tick)
{
	···
	/* tick init */
    thread->init_tick      = tick;
    thread->remaining_tick = tick;
    ```
}
/**
 * This function will notify kernel there is one tick passed. Normally,
 * this function is invoked by clock ISR.
 */
void rt_tick_increase(void)
{
    struct rt_thread *thread;

    /* increase the global tick */
    ++ rt_tick;

    /* check time slice */
    thread = rt_thread_self();

    -- thread->remaining_tick;
    if (thread->remaining_tick == 0)
    {
        /* change to initialized tick */
        thread->remaining_tick = thread->init_tick;

        /* yield */
        rt_thread_yield();		//如果運行時間達到,出讓CPU,查看這個函數,你可以發現是從就緒列表中刪除
        //從優先級列表刪除後,重新插入優先級列表
    }

    /* check timer */
    rt_timer_check();
}

長延時下的RT-Thread任務切換

  長延時,比如說要延時10秒,用rt_thread_delay()函數明顯是不行的。所以會出現這樣的函數

 tick = rt_tick_get();
    while (rt_tick_get() - tick < (RT_TICK_PER_SECOND / 2)) ;

  當在這個函數中時候,由於沒有主動出讓CPU,是不是以爲程序會卡死在這端代碼裏。但是實際上,程序是不會卡死在這端代碼中的。由於滴答定時器的原因,系統會檢索當前線程的remain_tick大小,如果相同優先級下有另外一個線程處於就緒態那麼就出讓CPU,如果沒有,那就繼續佔有CPU;或者,檢索定時器,查看定時器是不是有定時到達的線程,若果有,那就執行定時器的回調函數。

線程就緒列表,優先級表,定時器鏈表,對象容器,時間片這五者的關係怎麼用一張圖表示?他們中間是如何切換的?

  下面是我的理解:
他們的關係

  • 就緒列表是每個優先級一個
  • 在優先級列表裏檢索最大的已就緒優先級
  • 優先級列表不會主動檢索自己,檢索的功能是rt_scheduler來操作的
  • 定時器有定時器鏈表,每個滴答週期都會檢索定時器鏈表
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章