【Caffe】Blob, Layer 《很認真的講講Caffe》

前言

一開始我是拒絕的,因爲不知道從何寫起。還是強迫自己去做了這件事,希望自己在寫的過程收穫滿滿。


一、Blob簡介

如果把一個網絡結構Net比作一座大廈的話,那麼層Layer就是每一層樓,而Blob就是磚。

Net中,每一層Layer之間數據傳遞就是以Blob形式傳遞的,包括正向的原始數據data和反向的梯度信息diff。它是一個四維數組,(Num,Channels,Height,Width), 也可以寫成(n, k, h, w)。

以一張三通道480*640的圖片爲例子,如果轉爲Blob格式的數據,那麼這個Blob大小爲(1*3*480*640)。

如果結合caffe來看的話,N的大小是和每一Batch大小相同的。K是和每一層的output輸出大小相同的。H和W就是每一層輸出特徵圖的尺寸。注意哦,有些博客講對於一個比方有1024輸出和7*7卷積核的Convolution層,如果batch爲1,那麼輸出Blob是(1,1024,7,7)這個絕對是錯的啊!!!輸出的H和W是上一層的H和W經過7*7卷積核卷積運算過後的大小。

舉個例子,上一層輸出是(32,512,14,14),也就是說上一層輸出特徵圖大小是14*14。當前層輸出數量(卷積核數量)規定是1024,卷積核5*5,步長1,padding爲0。那麼輸出結果特徵圖大小應該是(14-5)/1 + 1 = 10 * (14-5)/1 +1 = 10,所以輸出Blob大小爲(32,1024,10,10)。


二、Layer簡介

Layer應該是Caffe的基本計算單元。Layer使得Net很有層次性,讓我們很直觀的看到計算進行的順序和上下關係。

跟蓋樓一致,數據是自下而上的計算傳輸。bottom爲輸入口,top爲輸出口。

Layer的一些派生類:


1. Vision Layer:負責處理視覺圖像,輸入輸出都是圖像。


      1.1.Convolution卷積層:核心層。

          lr_mult:學習率係數,當前層的學習率是根據solver.prototxt中base_lr學習率與此參數的乘積. 如果有兩個這個參數, 那麼第二個對應偏置項的學習率. 一般偏置項學習率是權值學習率的兩倍.

          num_oupput: 卷積核數量,也就是輸出N的數量.

          kernel_size:卷積核大小.如果寬高不等,可以用kernel_h和kernel_w設置.

          stride:卷積核步長,默認爲1.也可以用stride_h和stride_w設置.

          pad: 邊緣擴張,默認爲0.也可以用pad_h和pad_w設置. 如果設置pad=(kernel_sizie-1)/2,那麼卷積後的寬高不變.

          weight_filler:權值初始化方式.默認是"constant", 全爲0. 現在普遍用"xavier",也有用"gaussian"的.

          bias_filler:偏置項初始化方式.一般設置爲"constant",全爲0.

          group: 分組,默認爲1組.

          卷積層輸出特徵圖寬高計算公式: 輸出寬高 = (輸入寬高 + 2*pad - kernel_size)/stride + 1


      1.2.Pooling池化層: 降採樣層,縮小數據大小.

          kernel_sizie: 池化核大小

          pool:池化方式,有MAX, AVE, STOCHASTIC. 計算方式是在池化核大小的矩陣內選最大或計算平均數作爲當前連接的輸出.

          pad:邊緣擴張.

          stride:步長          


      1.3.Local Response Normalization(LRN)局部區域歸一化: 側抑制, 在AlexNet和GoogLeNet中有用到

          local_size:默認5, 如果是跨通道歸一化, 那麼表示通道數. 如果是在一個通道內歸一化, 則表示處理區域寬高.

          alpha:默認1,公式中參數

          beta:默認5,公式中參數

          norm_region:默認爲ACROSS_CHANNELS, 表示在相鄰的通道間求和歸一化. WITHIN_CHANNEL表示在一個通道內求和歸一化.

          歸一化公式: 分子爲每一個數, 分母爲


      1.4.im2col層:將一個大矩陣,重疊的劃分爲多個子矩陣,對一個子矩陣序列化成向量,然後得到另外一個矩陣.

          在caffe中, 卷積運算就是先對數據進行im2col操作, 再進行內積運算(inner product). 這樣做比原始的卷積才做速度更快.


      1.5.Batch Normalization(BatchNorm)層: 歸一化, 0均值, 單位方差, 應用在resnet.

          早期都使用白化處理數據, 常用的是PCA白化. 就是先對數據進行PCA處理, 然後在進行方差歸一化.

          但是白化需要計算協方差矩陣和求逆等操作, 計算量很大, 並且在反向傳播的時候不一定可導.

          理想情況是對整個數據集進行Norm處理, 但是不現實.

          所以提出了Batch Norm, 用一個Batch的均值和方差作爲對整個數據集均值和方差的估計.

          BN算法流程如下:

         

          有一個參數:

           batch_norm_param {

                          use_global_stats: false

           }

           這個參數默認爲false, 作用是使用當前batch數據的均值和方差做歸一化,

           如果設置爲true, 則會使用所有數據的均值和方差做歸一化. 這裏留一個疑問, 我猜測應該是累積以往所有數據的均值和方差.

           在訓練階段, 這個參數使用缺省設置, 就是false. 否則模型不收斂.

           在檢測階段, 這個參數使用true.  否則準確率很低.


2.  Loss Layers損失層:用於計算損失值, 根據損失值反向傳播求梯度更新參數.

    有Softmax(SoftmaxWithLoss), Sum-of-Squares/Euclidean(EuclideanLoss), Hinge/Margin(HingeLoss), Sigmoid Cross-Entropy(SigmoidCrossEntropyLoss), Infogain(InfogainLoss), Top-k


      2.1.SoftmaxWithLoss

          Softmax是一個分類器, 輸出概率(likelihood), 是Logistic Regression的一種推廣, 邏輯迴歸只能用於二分類, Softmax可以用於多分類.

          在Softmax輸出概率和已知類別的基礎上做交叉熵計算, 可以求得當前類別的loss.


3. Activation/Neuron Layer 激活層: 運算爲同址計算(in-place computation, 返回值覆蓋原值而不佔用新內存)


      3.1.Sigmoid

          沒有額外參數. 將輸入變量映射到[0,1]之間, 可以用作分類器. 求導容易. 但是,初始化結果會對sigmoid的輸出產生很大影響. 如果初始化過大或者過小, 梯度會接近0, 使參數掛掉. 並且sigmoid函數的輸出並沒有0均值.

          公式: y = 1/(1 + e ^ -x)

          層類型: Sigmoid


      3.2.TanH/Hyperbolic Tangent

          雙曲正切函數數據變換, 在形狀上與Sigmoid十分接近. 將輸入變量映射到[-1,1]之間, 求導容易, 輸出期望爲0, 所以在一定程度上TanH比Sigmoid要好一點. 與Sigmoid有共同的缺點, 就是對初始化敏感, 參數過大或者過小都會使梯度接近0. 

          公式: y = (e ^ x - e ^ -x) / (e ^ x + e ^ -x)

          層類型: ThanH


      3.3.ReLU/Rectified-Linear and Leaky-ReLU

          ReLU是現在使用最多的激活函數, 收斂快, 易求導. 標準ReLU將負數都變爲0, 在會影響數據表現. Leaky-ReLU設定一個參數, 讓負數輸入乘以這個參數, 在一定程度上保護了數據的表現.

          標準ReLU公式: y = max(0, x)

          Leaky-ReLU公式: y = max(x*negative_slope, x)

          層類型: ReLU


      3.4.Absolute Value

          求每個輸入數據的絕對值.

          公式: y = Abs(x)

          層類型: AbsVal


      3.5.Power

          對輸入數據進行冪運算.

          power: 默認爲1

          scale: 默認爲1

          shift: 默認爲0

          公式: y = (shift + scale * x) ^ power

          層類型:Power


      3.6.BNLL

          Binomial Normal Log Likelihood

          公式: y = log(1 + exp(x))

          層類型: BNLL


4. Data Layer 數據層: 網絡的最底層, 主要實現數據格式的轉換. 

    高效率: LevelDB, LMDB, 內存.  低效率: hdf5, 圖片格式

    層類型: Data

    include 設置是TEST階段還是TRAIN階段.

    transform_param負責數據的預處理

    根據輸入來源不同, data_param參數不同.


      4.1. transform_param

          scale: 0.00390625 = 1/255, 將輸入數據歸一化.

          mean_file_size: binaryproto 均值文件路徑

          mean_value: 重複三次,分別是三通道的均值. ImageNet常用均值爲{104, 117, 123 }.

          crop_size: 圖片縮放尺寸

          下面的處理在TRAIN階段使用.

          mirror: 0或1, true或false. 鏡像處理.


      4.2. 數據來自於LevelDB或者LMDB數據庫

          層類型:Data

          data_param參數:

          source: 包含數據庫的目錄路徑.

          batch_size: 批處理數量

          backend:  LevelDB或者LMDB, 默認是前者.


      4.3.數據來自於內存

          層類型: MemoryData

          memory_data_param參數:

          batch_size: 批數量

          channels: 通道數

          height: 高度

          width: 寬度


      4.4. 數據來自於hdf5

          層類型: HDF5Data

          hdf5_data_param參數:

          source: 路徑

          batch_size: 批數量


      4.5. 數據來自於圖片

          層類型: ImageData

          image_data_param參數:

          source:一個文本文件的路徑,每一行是一張圖片的路徑和標籤

          root_folder: 路徑, 和上面txt文件中路徑組合爲圖片的完整路徑. 

          batch_size: 批數量

          shuffle: 隨機打亂. 默認爲false

          new_height, new_width: 如果設置,則resize圖片


      4.6. 數據來自於Windows

          層類型: WindowData

          window_data_param參數:

          source: 一個文本文件的路徑

          batch_size: 批數量


5. Common Layers

    Inner Product(InnerProduct), Accuracy(Accuracy), Splitting(Split), Flattening(Flatten), Reshape(Reshape), Concatenation(Concat), Slicing(Slice), Elementwise(Eltwise), Argmax(ArgMax), Mean-Variance Normalization(MVN)


      5.1. Inner Product 全連接層

          輸出維度爲(n, k, 1, 1)

          層類型: InnerProduct

          lr_mult: 學習率係數

          num_output: 即爲k

          weight_filler: 權值初始化方式. 默認爲"constant", 全爲0, 一般設置成"xavier"或者"gaussian"

          bias_filler: 偏置項初始化方式, 一般設置爲"constant", 全爲0.

          bias_term: 是否使用偏置項, 默認爲true.


      5.2. Accuracy

          輸出分類結果的精確度, 只有在TEST階段纔有, 需要加入include參數.

          層類型: Accuracy


      5.3. Dropout

          用於防止過擬合, 隨機讓某些層節點權值不失效.

          dropout_ratio: 失效節點百分比


      5.4. Concatenation

          輸入數據的拼接

          層類型: Concat

          axis: (n, k, h, w)的索引, 表示拼接該通道.


      5.5. Slicing

          輸入數據的拆分, 與Concatenation功能相反.

          層類型: Slice

          axis: 作用參照上面.

          slice_point: 此參數個數必須比top數量少一個. 第一個參數表示第一個拆分出來的數據的數量, 以此類推. 最後一個數據的數量等於總數量減去前面所有參數的結果.


以上內容, 部分參考自: http://www.cnblogs.com/denny402/category/759199.html


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章