Linux C 堆與棧的區別

一、預備知識——程序的內存分配
一個由C/C++編譯的程序佔用的內存分爲以下幾個部分
1、棧區(stack)— 由編譯器自動分配釋放 ,存放函數的參數值,局部變量的值等。其操作方式類似於數據結構中的棧。
2、堆區(heap) — 一般由程序員分配釋放, 若程序員不釋放,程序結束時可能由OS回收 。注意它與數據結構中的堆是兩回事,分配方式倒是類似於鏈表。
3、全局區(靜態區)(static)—,全局變量和靜態變量的存儲是放在一塊的,初始化的全局變量和靜態變量在一塊區域, 未初始化的全局變量和未初始化的靜態變量在相鄰的另一塊區域。 - 程序結束後由系統釋放
4、文字常量區 —常量字符串就是放在這裏的。 程序結束後由系統釋放
5、程序代碼區—存放函數體的二進制代碼。

例子程序
這是一個前輩寫的,非常詳細
//main.cpp
int a = 0; 全局初始化區
char *p1;  全局未初始化區
main()
{
    int b; //棧
    char s[] = "abc"; //棧
    char *p2; //棧
    char *p3 = "123456"; //123456在常量區,p3在棧上。
    static int c =0; //全局(靜態)初始化區
    p1 = (char *)malloc(10);
    p2 = (char *)malloc(20); //分配得來得10和20字節的區域就在堆區。
    strcpy(p1, "123456"); //123456放在常量區,編譯器可能會將它與p3所指向的"123456"優化成一個地方。
}


二、堆和棧的理論知識
2.1申請方式

棧(stack):
由系統自動分配。 例如,聲明在函數中一個局部變量 int b; 系統自動在棧中爲b開闢空間。
堆(heap):
由用戶申請,並指明大小,在c中malloc函數
如p1 = (char *)malloc(10);
在C++中用new運算符
如p2 = (char *)new(10);
但是注意p1、p2本身是在棧中,它們指向的空間在堆中。

2.2 申請後系統的響應
棧(stack):只要棧的剩餘空間大於所申請空間,系統將爲程序提供內存,否則將報異常提示棧溢出。

堆(heap):首先應該知道操作系統有一個記錄空閒內存地址的鏈表,當系統收到程序的申請時,會遍歷該鏈表,尋找第一個空間大於所申請空間的堆結點,然後將該結點從空閒結點鏈表中刪除,並將該結點的空間分配給程序,另外,對於大多數系統,會在這塊內存空間中的首地址處記錄本次分配的大小,這樣,代碼中的delete語句才能正確的釋放本內存空間。另外,由於找到的堆結點的大小不一定正好等於申請的大小,系統會自動的將多餘的那部分重新放入空閒鏈表中。

2.3申請大小的限制
棧(stack):在Windows下,棧是向低地址擴展的數據結構,是一塊連續的內存的區域。這句話的意思是棧頂的地址和棧的最大容量是系統預先規定好的,在 WINDOWS下,棧的大小是2M(也有的說是1M,總之是一個編譯時就確定的常數),如果申請的空間超過棧的剩餘空間時,將提示overflow。因此,能從棧獲得的空間較小。

堆(heap):堆是向高地址擴展的數據結構,是不連續的內存區域。這是由於系統是用鏈表來存儲的空閒內存地址的,自然是不連續的,而鏈表的遍歷方向是由低地址向高地址。堆的大小受限於計算機系統中有效的虛擬內存。由此可見,堆獲得的空間比較靈活,也比較大。

2.4申請效率的比較:
棧(stack):由系統自動分配,速度較快,但程序員是無法控制的。

堆(heap):是由new分配的內存,一般速度比較慢,而且容易產生內存碎片,不過用起來最方便.
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配內存,它不是在堆,也不是在棧是直接在進程的地址空間中保留一快內存,雖然用起來最不方便。但是速度快,也最靈活。

2.5堆和棧中的存儲內容
棧(stack): 在函數調用時,第一個進棧的是主函數中後的下一條指令(函數調用語句的下一條可執行語句)的地址,然後是函數的各個參數,在大多數的C編譯器中,參數是由右往左入棧的,然後是函數中的局部變量。注意靜態變量是不入棧的。
當本次函數調用結束後,局部變量先出棧,然後是參數,最後棧頂指針指向最開始存的地址,也就是主函數中的下一條指令,程序由該點繼續運行。

堆(heap):一般是在堆的頭部用一個字節存放堆的大小。堆中的具體內容有程序員安排。

2.6存取效率的比較
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";

aaaaaaaaaaa是在運行時刻賦值的;
而bbbbbbbbbbb是在編譯時就確定的;
但是,在以後的存取中,在棧上的數組比指針所指向的字符串(例如堆)快。

比如:
#include <stdio.h>
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}

對應的彙編代碼
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一種在讀取時直接就把字符串中的元素讀到寄存器cl中,而第二種則要先把指針值讀到edx中,在根據edx讀取字符,顯然慢了。

2.7小結:
堆和棧的區別可以用如下的比喻來看出:
    使用棧就象我們去飯館裏喫飯,只管點菜(發出申請)、付錢、和喫(使用),喫飽了就走,不必理會切菜、洗菜等準備工作和洗碗、刷鍋等掃尾工作,他的好處是快捷,但是自由度小。
    使用堆就象是自己動手做喜歡喫的菜餚,比較麻煩,但是比較符合自己的口味,而且自由度大。
堆和棧的主要區別:<br     操作系統方面的堆和棧,如上面說的那些,不多說了。
    還有就是數據結構方面的堆和棧,這些都是不同的概念。這裏的堆實際上指的就是(滿足堆性質的)優先隊列的一種數據結構,第1個元素有最高的優先權;棧實際上就是滿足先進後出的性質的數學或數據結構。
    雖然堆棧,堆棧的說法是連起來叫,但是他們還是有很大區別的,連着叫只是由於歷史的原因。

三、棧和堆的主要區別 
前面已經介紹過,棧是由編譯器在需要時分配的,不需要時自動清除的變量存儲區。裏面的變量通常是局部變量、函數參數等。堆是由 malloc()函數(C++語言爲 new 運算符)分配的內存塊,內存釋放由程序員手動控制,在 C 語言爲 free 函數完成(C++中爲 delete)。

棧和堆的主要區別有以下幾點: 
(1)管理方式不同
棧由編譯器自動管理,無需程序員手工控制;
堆空間的申請釋放工作由程序員控制,容易產生內存泄漏。 

(2)空間大小不同
棧是向低地址擴展的數據結構,是一塊連續的內存區域。這句話的意思是棧頂的地址和棧的最大容量是系統預先規定好的,當申請的空間超過棧的剩餘空間時,將提示溢出。因此,用戶能從棧獲得的空間較小。 
堆是向高地址擴展的數據結構,是不連續的內存區域。因爲系統是用鏈表來存儲空閒內存地址的,且鏈表的遍歷方向是由低地址向高地址。由此可見,堆獲得的空間較靈活,也較大。棧中元素都是一一對應的,不會存在一個內存塊從棧中間彈出的情況。 

(3)是否產生碎片
對於堆來講,頻繁的 malloc/free(new/delete)勢必會造成內存空間的不連續,從而造成大量的碎片,使程序效率降低(雖然程序在退出後操作系統會對內存進行回收管理)。 對於棧來講,則不會存在這個問題。 

(4)增長方向不同
堆的增長方向是向上的,即向着內存地址增加的方向;
棧的增長方向是向下的,即向着內存地址減小的方向。 

(5)分配方式不同
堆都是程序中由 malloc()函數動態申請分配並由 free()函數釋放的;
棧的分配和釋放是由編譯器完成的,棧的動態分配由 alloca()函數完成,但是棧的動態分配和堆是不同的,他的動態分配是由編譯器進行申請和釋放的,無需手工實現。

(6)分配效率不同
棧是機器系統提供的數據結構,計算機會在底層對棧提供支持:分配專門的寄存器存放棧的地址,壓棧出棧都有專門的指令執行。堆則是 C 函數庫提供的,它的機制很複雜,例如爲了分配一塊內存,庫函數會按照一定的算法(具體的算法可以參考數據結構/操作系統)在堆內存中搜索可用的足夠大的空間,如 果 沒 有足夠大的空間(可能是由於內存碎片太多),就有需要操作系統來重新整理內存空間,這樣就有機會分到足夠大小的內存,然後返回。顯然,堆的效率比棧要低得多。
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章