正交多分辨分析:共軛濾波器證明

({Vj,jZ},ϕ(t))(\{V_{j},j\in \mathbb{Z}\},\phi(t))L2(R)L^{2}(\mathbb{R})上的一個正交多分辨分析,且有Wj:WjVj,WjVj=Vj+1,ψ(t)W0,s.t.{ψ(tn);nZ}W_{j}:W_{j} \perp V_{j},W_{j} \cup V_{j}=V_{j+1},\exist \psi(t)\in W_{0},s.t.\{\psi(t-n);n\in \mathbb{Z}\}構成W0W_{0}O.N.B。則我們知道ϕ(t)\phi(t)爲尺度函數,ψ(t)\psi(t)爲正交小波函數,兩者可以分別利用低通濾波器H(w)H(w)和帶通濾波器G(w)G(w)來形象的描述(體現了線性子空間V0V_{0}W0W_{0}V1V_{1}之間的關係)。下面給出關於兩種濾波器的性質:

H(w2+H(w+π)2=1|H(w|^{2}+|H(w+\pi)|^{2}=1
G(w2+G(w+π)2=1|G(w|^{2}+|G(w+\pi)|^{2}=1
H(w)G(w)+H(w+π)G(w+π)=0H(w)G^{*}(w)+H(w+\pi)G^{*}(w+\pi)=0

引入記號M(w)\bf {M}(\it w),
M(w)=[H(w)H(w+π)G(w)G(w+π)]\bf {M}(\it w)= \left[ \begin{matrix} H(w) & H(w+\pi) \\ G(w) & G(w+\pi) \end{matrix} \right ]
由濾波器性質可以得到:M(w)M(w)=[1001] \bf {M}(\it w) \bf {M^{*}}(\it w)=\left[ \begin{matrix} 1 & 0 \\ 0& 1 \end{matrix} \right ]M(w)\bf {M}(\it w)爲酉矩陣。下面給出證明過程:

(1)首先證明一個引理。

引理:設s(t)L2(R)s(t)\in L^{2}(\mathbb{R}) ,則{s(tn);nZ}\{s(t-n);n\in\mathbb{Z}\}O.B.S    kZs^(w+2kπ)2=1\;\Leftrightarrow\;\sum\limits_{k\in\mathbb{Z}}\left | \hat s(w+2k\pi)\right |^{2}=1

證明:

  1. 充分性:設s(t)L2(R)s(t)\in L^{2}(\mathbb{R}) ,則{s(tn);nZ}\{s(t-n);n\in\mathbb{Z}\}O.B.S    kZs^(w+2kπ)2=1\;\rightarrow\;\sum\limits_{k\in\mathbb{Z}}\left | \hat s(w+2k\pi)\right |^{2}=1
    s(tn)s(tm)dt=δ(nm),(n,m)Z2\because\int_{-\infty}^{\infty}s(t-n)s^{*}(t-m)dt=\delta(n-m),\forall(n,m)\in\mathbb{Z}^{2}
    s(tn)s(tm)dt=12πs^(w)einws^(w)eimwdw=12πs^(w)2ei(nm)wdw=12πkZ2kπ(2k+1)πs^(w)2ei(nm)wdw=12πkZ02πs^(w+2kπ)2ei(nm)wdw=12π02πkZs^(w+2kπ)2ei(nm)wdw=12π02πA(w)ei(nm)wdw=δ(nm)\therefore\int_{-\infty}^{\infty}s(t-n)s^{*}(t-m)dt \\=\frac{1}{2\pi}\int_{-\infty}^{\infty}\hat s(w)e^{-inw}\hat s^{*}(w)e^{imw}dw\\=\frac{1}{2\pi}\int_{-\infty}^{\infty}|\hat s(w)|^{2}e^{-i(n-m)w}dw \\=\frac{1}{2\pi}\sum\limits_{k\in \mathbb{Z}}\int_{2k\pi}^{(2k+1)\pi}|\hat s(w)|^{2}e^{-i(n-m)w}dw \\=\frac{1}{2\pi}\sum\limits_{k\in \mathbb{Z}}\int_{0}^{2\pi}|\hat s(w+2k\pi)|^{2}e^{-i(n-m)w}dw \\=\frac{1}{2\pi}\int_{0}^{2\pi}\sum\limits_{k\in \mathbb{Z}}|\hat s(w+2k\pi)|^{2}e^{-i(n-m)w}dw \\=\frac{1}{2\pi}\int_{0}^{2\pi}A(w)e^{-i(n-m)w}dw \\=\delta(n-m)
    其中A(w)=k=k=s^(w+2kπ)2L2(0,2π)A(w)=\sum\limits_{k=-\infty}^{k=\infty}|\hat s(w+2k\pi)|^{2}\in L^{2}(0,2\pi)
    {12πeipw;pZ}\{ \frac{1}{\sqrt{2\pi}}e^{-ipw};p\in \mathbb{Z}\}L2(0,2π)L^{2}(0,2\pi)上的O.N.B,所以:
    12πA(w)=pZδ(p)12πeipwA(w)=1\frac{1}{\sqrt{2\pi}}A(w)=\sum\limits_{p\in\mathbb{Z}}\delta(p)\frac{1}{\sqrt{2\pi}}e^{-ipw}\rightarrow A(w)=1
  2. 必要性:若s(t)L2(R),kZs^(w+2kπ)2=1  s(t)\in L^{2}(\mathbb{R}),\sum\limits_{k\in\mathbb{Z}}\left | \hat s(w+2k\pi)\right |^{2}=1\rightarrow\;{s(tn);nZ}\{s(t-n);n\in\mathbb{Z}\}O.B.S
    s(tn)s(tm)dt=12π02πA(w)ei(nm)wdw=12π02πei(nm)wdw=02π12πeinw12πei(m)wdw=δ(nm)\therefore \int_{-\infty}^{\infty}s(t-n)s^{*}(t-m)dt \\=\frac{1}{2\pi}\int_{0}^{2\pi}A(w)e^{-i(n-m)w}dw \\=\frac{1}{2\pi}\int_{0}^{2\pi}e^{-i(n-m)w}dw \\=\int_{0}^{2\pi}\frac{1}{\sqrt{2\pi}}e^{-inw}\frac{1}{\sqrt{2\pi}}e^{-i(-m)w}dw \\=\delta(n-m)

(2)V0\because V_{0}O.N.B{ϕ(tn);nZ}\{ \phi (t-n);n\in\mathbb{Z}\}構成L2(R)L^{2}(\mathbb{R})上的O.N.S,所以由上述引理可以得到:
kZϕ^(w+2kπ)2=1            (1)\sum\limits_{k\in\mathbb{Z}}\left | \hat \phi(w+2k\pi)\right |^{2}=1\;\;\;\;\;\;(1)
將上式帶入尺度方程的頻域形式,即:
ϕ^(w)=H(w2)ϕ^(w2)              (2)\hat \phi(w)=H(\frac{w}{2})\hat \phi(\frac{w}{2})\;\;\;\;\;\;\;(2)
將式(2)帶入式(1):
kZH(w+2kπ2)ϕ^(w+2kπ2)2=1          (3)\sum\limits_{k\in\mathbb{Z}}\left |H(\frac{w+2k\pi}{2})\hat \phi(\frac{w+2k\pi}{2})\right |^{2}=1\;\;\;\;\;(3)
其中H(w)H(w)爲低通濾波器,表示爲:
H(w)=nZ12hneinwH(w)=\sum\limits_{n\in\mathbb{Z}}\frac{1}{\sqrt{2}}h_{n}e^{-inw}
H(w)H(w)爲週期2π2\pi的週期函數,因此可以對(3)中的H(w+2kπ2)H(\frac{w+2k\pi}{2})進行化簡:
H(w2)2k=2mmZϕ^(w2+2mπ)2+H(w2+π)2k=2m+1mZϕ^(w2+π+2mπ)2=1|H(\frac{w}{2})|^{2}\sum\limits_{k=2m,m\in\mathbb{Z}}|\hat \phi(\frac{w}{2}+2m\pi)|^{2}\\+|H(\frac{w}{2}+\pi)|^{2}\sum\limits_{k=2m+1,m\in\mathbb{Z}}|\hat \phi(\frac{w}{2}+\pi+2m\pi)|^{2}=1
重複利用式(1),可以得到:
H(w2)2+H(w2+π)2=1|H(\frac{w}{2})|^{2}+|H(\frac{w}{2}+\pi)|^{2}=1
對於所有的ww,上式均成立,所以有:
H(w2+H(w+π)2=1|H(w|^{2}+|H(w+\pi)|^{2}=1
這也就是共軛濾波器,體現了尺度函數的性質。

(3)同樣地道理,W0\because W_{0}O.N.B{ψ(tn);nZ}\{ \psi (t-n);n\in\mathbb{Z}\}構成L2(R)L^{2}(\mathbb{R})上的O.N.S,所以由上述引理可以得到:
kZψ^(w+2kπ)2=1            (4)\sum\limits_{k\in\mathbb{Z}}\left | \hat \psi(w+2k\pi)\right |^{2}=1\;\;\;\;\;\;(4)
將上式帶入尺度方程的頻域形式,即:
ψ^(w)=G(w2)ϕ^(w2)              (5)\hat \psi(w)=G(\frac{w}{2})\hat \phi(\frac{w}{2})\;\;\;\;\;\;\;(5)
將式(5)帶入式(4):
kZG(w+2kπ2)ϕ^(w+2kπ2)2=1          (6)\sum\limits_{k\in\mathbb{Z}}\left |G(\frac{w+2k\pi}{2})\hat \phi(\frac{w+2k\pi}{2})\right |^{2}=1\;\;\;\;\;(6)
其中G(w)G(w)爲低通濾波器,表示爲:
G(w)=nZ12gneinwG(w)=\sum\limits_{n\in\mathbb{Z}}\frac{1}{\sqrt{2}}g_{n}e^{-inw}
G(w)G(w)爲週期2π2\pi的週期函數,因此可以對(6)中的G(w+2kπ2)G(\frac{w+2k\pi}{2})進行化簡:
G(w2)2k=2mmZϕ^(w2+2mπ)2+G(w2+π)2k=2m+1mZϕ^(w2+π+2mπ)2=1|G(\frac{w}{2})|^{2}\sum\limits_{k=2m,m\in\mathbb{Z}}|\hat \phi(\frac{w}{2}+2m\pi)|^{2}\\+|G(\frac{w}{2}+\pi)|^{2}\sum\limits_{k=2m+1,m\in\mathbb{Z}}|\hat \phi(\frac{w}{2}+\pi+2m\pi)|^{2}=1
重複利用式(1),可以得到:
G(w2)2+G(w2+π)2=1|G(\frac{w}{2})|^{2}+|G(\frac{w}{2}+\pi)|^{2}=1
對於所有的ww,上式均成立,所以有:
G(w2+G(w+π)2=1|G(w|^{2}+|G(w+\pi)|^{2}=1
這也就是共軛濾波器,體現了小波函數的性質。

(4)W0\because W_{0}O.N.B{ψ(tn);nZ}\{ \psi (t-n);n\in\mathbb{Z}\}構成L2(R)L^{2}(\mathbb{R})上的O.N.SV0\because V_{0}O.N.B{ϕ(tn);nZ}\{ \phi (t-n);n\in\mathbb{Z}\}也構成L2(R)L^{2}(\mathbb{R})上的O.N.S,且V0W0V_{0}\perp W_{0},所以有:

ϕ(tn)ψ(tm)dt=12πϕ^(w)ψ^(w)dw=12πkZ02πϕ^(w+2kπ)ψ^(w+2kπ)ei(nm)wdw=12π02πkZϕ^(w+2kπ)ψ^(w+2kπ)ei(nm)wdw=12π02πB(w)(w+2kπ)ei(nm)wdw=0\therefore\int_{-\infty}^{\infty}\phi(t-n)\psi^{*}(t-m)dt \\=\frac{1}{2\pi}\int_{-\infty}^{\infty}\hat \phi(w)\hat \psi^{*}(w)dw \\=\frac{1}{2\pi}\sum\limits_{k\in \mathbb{Z}}\int_{0}^{2\pi}\hat \phi(w+2k\pi)\hat \psi^{*}(w+2k\pi)e^{-i(n-m)w}dw \\=\frac{1}{2\pi}\int_{0}^{2\pi}\sum\limits_{k\in \mathbb{Z}}\hat \phi(w+2k\pi)\hat \psi^{*}(w+2k\pi)e^{-i(n-m)w}dw \\=\frac{1}{2\pi}\int_{0}^{2\pi}B(w)(w+2k\pi)e^{-i(n-m)w}dw \\=0
其中B(w)=kZϕ^(w+2kπ)ψ^(w+2kπ)L2(0,2π)B(w)=\sum\limits_{k\in \mathbb{Z}}\hat \phi(w+2k\pi)\hat \psi^{*}(w+2k\pi)\in L^{2}(0,2\pi)
{12πeipw;pZ}\{ \frac{1}{\sqrt{2\pi}}e^{-ipw};p\in \mathbb{Z}\}L2(0,2π)L^{2}(0,2\pi)上的O.N.B,所以:
12πB(w)=pZ012πeipwB(w)=0\frac{1}{\sqrt{2\pi}}B(w)=\sum\limits_{p\in\mathbb{Z}}0\frac{1}{\sqrt{2\pi}}e^{-ipw}\rightarrow B(w)=0
即:

{ψ(tn);nZ}\{ \psi (t-n);n\in\mathbb{Z}\}{ϕ(tn);nZ}\{ \phi (t-n);n\in\mathbb{Z}\}構成L2(R)L^{2}(\mathbb{R})上兩組正交的O.N.S,則:
kZϕ^(w+2kπ)ψ^(w+2kπ)=0\sum\limits_{k\in \mathbb{Z}}\hat \phi(w+2k\pi)\hat \psi^{*}(w+2k\pi)=0

將式(2)和式(5)帶入到上式中,可以得到:
kZH(w+2kπ2)G(w+2kπ2)ϕ^(w+2kπ2)2=0          (6)\sum\limits_{k\in\mathbb{Z}}H(\frac{w+2k\pi}{2})G^{*}(\frac{w+2k\pi}{2})|\hat \phi(\frac{w+2k\pi}{2})|^{2}=0\;\;\;\;\;(6)
重複之前的推導過程,可以得到:

H(w)G(w)+H(w+π)G(w+π)=0H(w)G^{*}(w)+H(w+\pi)G^{*}(w+\pi)=0

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章