科研表徵化學筆記

掃描電子顯微鏡(SEM) 是一種介於透射電子顯微鏡和光學顯微鏡之間的一種觀察手段。其利用聚焦的很窄的高能電子束來掃描樣品, 通過光束與物質間的相互作用, 來激發各種物理信息, 對這些信息收集、放大、再成像以達到對物質微觀形貌表徵的目的。新式的掃描電子顯微鏡的分辨率可以達到1nm;放大倍數可以達到30萬倍及以上連續可調;並且景深大, 視野大, 成像立體效果好。此外, 掃描電子顯微鏡和其他分析儀器相結合, 可以做到觀察微觀形貌的同時進行物質微區成分分析。掃描電子顯微鏡在岩土、石墨、陶瓷及納米材料等的研究上有廣泛應用。因此掃描電子顯微鏡在科學研究領域具有重大作用。

透射電子顯微鏡(TEM),可以看到在光學顯微鏡下無法看清的小於0.2um的細微結構,這些結構稱爲亞顯微結構或超微結構。要想看清這些結構,就必須選擇波長更短的光源,以提高顯微鏡的分辨率。1932年Ruska發明了以電子束爲光源的透射電子顯微鏡,電子束的波長要比可見光和紫外光短得多,並且電子束的波長與發射電子束的電壓平方根成反比,也就是說電壓越高波長越短。目前TEM的分辨力可達0.2nm。


X射線光電子能譜分析(XPS)是用X射線去輻射樣品,使原子或分子的內層電子或價電子受激發射出來。被光子激發出來的電子稱爲光電子,可以測量光電子的能量,以光電子的動能爲橫座標,相對強度(脈衝/s)爲縱座標可做出光電子能譜圖,從而獲得待測物組成。

X射線衍射(XRD):當一束單色X射線入射到晶體時,由於晶體是由原子規則排列成的晶胞組成,這些規則排列的原子間距離與入射X射線波長有X射線衍射分析相同數量級,故由不同原子散射的X射線相互干涉,在某些特殊方向上產生強X射線衍射,衍射線在空間分佈的方位和強度,與晶體結構密切相關,每種晶體所產生的衍射花樣都反映出該晶體內部的原子分配規律。這就是X射線衍射的基本原理。

能量色散X射線光譜儀( EDX):EDX是藉助於分析試樣發出的元素特徵X射線波長和強度實現的, 根據不同元素特徵X射線波長的不同來測定試樣所含的元素。通過對比不同元素譜線的強度可以測定試樣中元素的含量。通常EDX結合電子顯微鏡使用,可以對樣品進行微區成分分析。


拉曼光譜(Raman spectra)是一種散射光譜。拉曼光譜分析法是基於印度科學家C.V.拉曼(Raman)所發現的拉曼散射效應,對與入射光頻率不同的散射光譜進行分析以得到分子振動、轉動方面信息,並應用於分子結構研究的一種分析方法。


孔徑分佈與氮氣吸附:孔徑分佈(pore size distribution)是指材料中存在的各級孔徑按數量或體積計算的百分率。

用氮吸附法測定中微孔孔徑分佈是比較成熟而廣泛採用的方法,它是用氮吸附法測定BET比表面積的一種延伸,都是利用氮氣的等溫吸附特性曲線:在液氮溫度下,氮氣在固體表面的吸附量取決於氮氣的相對壓力(P/P0),P爲氮氣分壓,P0爲液氮溫度下氮氣的飽和蒸汽壓;當P/P0在0.05-0.35範圍內時,樣品吸附特性符合BET方程;當P/P0≥0.4時,由於產生毛細凝聚現象,即氮氣開始在顆粒孔隙中發生凝聚,通過實驗和理論分析,可以測定孔容、孔徑分佈。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章