推薦系統實踐 0x06 基於鄰域的算法(1)

基於鄰域的算法(1)

基於鄰域的算法主要分爲兩類,一類是基於用戶的協同過濾算法,另一類是基於物品的協同過濾算法。我們首先介紹基於用戶的協同過濾算法。

基於用戶的協同過濾算法(UserCF)

基於用戶的協同過濾算法是最古老的算法了,它標誌着推薦系統的誕生。當一個用戶甲需要個性化推薦時,首先找到那些跟他興趣相似的用戶,然後把那些用戶喜歡的,甲沒有聽說過的物品推薦給用戶甲,那麼這種方式就叫做基於用戶的協同過濾算法。

那麼,這個算法包含兩個步驟:

  1. 找到和目標用戶興趣相似的用戶集合。
  2. 找到這個集合中的用戶喜歡的,且目標用戶沒有聽說過的物品推薦給目標用戶。

我們用用戶行爲的相似度來表示興趣的相似度。對於用戶\(u\)和用戶\(v\)\(N(u)\)\(N(v)\)表示各自有過正反饋的物品集合。那麼我們用Jaccard公式表示用戶\(u\)和用戶\(v\)之間的興趣相似度。

\[w_{uv}=\frac{|N(u)\cap N(v)|}{|N(u)\cup N(v)|} \]

另外也可以通過餘弦相似度進行計算

\[w_{uv}=\frac{|N(u)\cap N(v)|}{\sqrt{|N(u)||N(v)|}} \]

餘弦相似度的計算代碼爲

def UserSimilarity(train):
    W = dict()
    for u in train.keys():
        for v in train.keys():
            if u == v:
                continue
            W[u][v] = len(train[u] & train[v])
            W[u][v] /= math.sqrt(len(train[u]) * len(train[v]) * 1.0)
    return W

如果這樣去計算的話,在用戶非常大的時候會非常耗時,因爲很多用戶之間並沒有對相同的物品產生過行爲,算法也把時間浪費在計算用戶興趣相似度上。那麼我們可以對公式分子部分交集不爲空的部分。

建立物品到用戶的倒排表,對於每個物品都保存對該物品產生過行爲的用戶列表。

def UserSimilarity(train):
    # build inverse table for item_users
    item_users = dict()
    for u, items in train.items():
        for i in items.keys():
            if i not in item_users:
                item_users[i] = set()
            item_users[i].add(u)
            #calculate co-rated items between users
    C = dict()
    N = dict()
    for i, users in item_users.items():
        for u in users:
            N[u] += 1
            for v in users:
                if u == v:
                    continue
                C[u][v] += 1
    # calculate finial similarity matrix W
    W = dict()
    for u, related_users in C.items():
        for v, cuv in related_users.items():
            W[u][v] = cuv / math.sqrt(N[u] * N[v])
    return W

有了其他用戶的對某個物品\(i\)感興趣的評分,那麼根據相似度可以計算出用戶\(u\)對物品\(i\)的感興趣評分爲:

\[p(u,i) = \sum_{v\in S(u,K) \cap N(i)}{w_{uv}r_{vi}} \]

其中\(S(u,K)\)是與用戶\(u\)最相似的K個用戶。因爲使用的是單一行爲的隱反饋數據,所以所有的評分都爲1。另外還可以對用戶的相似度進行改進,比如對冷門物品的興趣更能反應他們的興趣相似度。所以可以加上熱門物品相似度的懲罰。

\[w_{uv}=\frac{\sum_{i\in N(u)\cap N(v)}\frac{1}{\log 1+|N(i)|}}{\sqrt{|N(u)||N(v)|}} \]

我們用上一篇介紹的MovieLens數據集,以及以前介紹的評測方式來把代碼串起來,代碼來自於參考裏面的github,總體代碼爲:

import random
import math
import time
from tqdm import tqdm


def timmer(func):
    def wrapper(*args, **kwargs):
        start_time = time.time()
        res = func(*args, **kwargs)
        stop_time = time.time()
        print('Func %s, run time: %s' %
              (func.__name__, stop_time - start_time))
        return res

    return wrapper


class Dataset():
    def __init__(self, fp):
        # fp: data file path
        self.data = self.loadData(fp)

    @timmer
    def loadData(self, fp):
        data = []
        for l in open(fp):
            data.append(tuple(map(int, l.strip().split('::')[:2])))
        return data

    @timmer
    def splitData(self, M, k, seed=1):
        '''
        :params: data, 加載的所有(user, item)數據條目
        :params: M, 劃分的數目,最後需要取M折的平均
        :params: k, 本次是第幾次劃分,k~[0, M)
        :params: seed, random的種子數,對於不同的k應設置成一樣的
        :return: train, test
        '''
        train, test = [], []
        random.seed(seed)
        for user, item in self.data:
            # 這裏與書中的不一致,本人認爲取M-1較爲合理,因randint是左右都覆蓋的
            if random.randint(0, M - 1) == k:
                test.append((user, item))
            else:
                train.append((user, item))

        # 處理成字典的形式,user->set(items)
        def convert_dict(data):
            data_dict = {}
            for user, item in data:
                if user not in data_dict:
                    data_dict[user] = set()
                data_dict[user].add(item)
            data_dict = {k: list(data_dict[k]) for k in data_dict}
            return data_dict

        return convert_dict(train), convert_dict(test)


class Metric():
    def __init__(self, train, test, GetRecommendation):
        '''
        :params: train, 訓練數據
        :params: test, 測試數據
        :params: GetRecommendation, 爲某個用戶獲取推薦物品的接口函數
        '''
        self.train = train
        self.test = test
        self.GetRecommendation = GetRecommendation
        self.recs = self.getRec()

    # 爲test中的每個用戶進行推薦
    def getRec(self):
        recs = {}
        for user in self.test:
            rank = self.GetRecommendation(user)
            recs[user] = rank
        return recs

    # 定義精確率指標計算方式
    def precision(self):
        all, hit = 0, 0
        for user in self.test:
            test_items = set(self.test[user])
            rank = self.recs[user]
            for item, score in rank:
                if item in test_items:
                    hit += 1
            all += len(rank)
        return round(hit / all * 100, 2)

    # 定義召回率指標計算方式
    def recall(self):
        all, hit = 0, 0
        for user in self.test:
            test_items = set(self.test[user])
            rank = self.recs[user]
            for item, score in rank:
                if item in test_items:
                    hit += 1
            all += len(test_items)
        return round(hit / all * 100, 2)

    # 定義覆蓋率指標計算方式
    def coverage(self):
        all_item, recom_item = set(), set()
        for user in self.test:
            for item in self.train[user]:
                all_item.add(item)
            rank = self.recs[user]
            for item, score in rank:
                recom_item.add(item)
        return round(len(recom_item) / len(all_item) * 100, 2)

    # 定義新穎度指標計算方式
    def popularity(self):
        # 計算物品的流行度
        item_pop = {}
        for user in self.train:
            for item in self.train[user]:
                if item not in item_pop:
                    item_pop[item] = 0
                item_pop[item] += 1

        num, pop = 0, 0
        for user in self.test:
            rank = self.recs[user]
            for item, score in rank:
                # 取對數,防止因長尾問題帶來的被流行物品所主導
                pop += math.log(1 + item_pop[item])
                num += 1
        return round(pop / num, 6)

    def eval(self):
        metric = {
            'Precision': self.precision(),
            'Recall': self.recall(),
            'Coverage': self.coverage(),
            'Popularity': self.popularity()
        }
        print('Metric:', metric)
        return metric


# 1. 隨機推薦
def Random(train, K, N):
    '''
    :params: train, 訓練數據集
    :params: K, 可忽略
    :params: N, 超參數,設置取TopN推薦物品數目
    :return: GetRecommendation,推薦接口函數
    '''
    items = {}
    for user in train:
        for item in train[user]:
            items[item] = 1

    def GetRecommendation(user):
        # 隨機推薦N個未見過的
        user_items = set(train[user])
        rec_items = {k: items[k] for k in items if k not in user_items}
        rec_items = list(rec_items.items())
        random.shuffle(rec_items)
        return rec_items[:N]

    return GetRecommendation


# 2. 熱門推薦
def MostPopular(train, K, N):
    '''
    :params: train, 訓練數據集
    :params: K, 可忽略
    :params: N, 超參數,設置取TopN推薦物品數目
    :return: GetRecommendation, 推薦接口函數
    '''
    items = {}
    for user in train:
        for item in train[user]:
            if item not in items:
                items[item] = 0
            items[item] += 1

    def GetRecommendation(user):
        # 隨機推薦N個沒見過的最熱門的
        user_items = set(train[user])
        rec_items = {k: items[k] for k in items if k not in user_items}
        rec_items = list(
            sorted(rec_items.items(), key=lambda x: x[1], reverse=True))
        return rec_items[:N]

    return GetRecommendation


# 3. 基於用戶餘弦相似度的推薦
def UserCF(train, K, N):
    '''
    :params: train, 訓練數據集
    :params: K, 超參數,設置取TopK相似用戶數目
    :params: N, 超參數,設置取TopN推薦物品數目
    :return: GetRecommendation, 推薦接口函數
    '''
    # 計算item->user的倒排索引
    item_users = {}
    for user in train:
        for item in train[user]:
            if item not in item_users:
                item_users[item] = []
            item_users[item].append(user)

    # 計算用戶相似度矩陣
    sim = {}
    num = {}
    for item in item_users:
        users = item_users[item]
        for i in range(len(users)):
            u = users[i]
            if u not in num:
                num[u] = 0
            num[u] += 1
            if u not in sim:
                sim[u] = {}
            for j in range(len(users)):
                if j == i: continue
                v = users[j]
                if v not in sim[u]:
                    sim[u][v] = 0
                sim[u][v] += 1
    for u in sim:
        for v in sim[u]:
            sim[u][v] /= math.sqrt(num[u] * num[v])

    # 按照相似度排序
    sorted_user_sim = {k: list(sorted(v.items(), \
                               key=lambda x: x[1], reverse=True)) \
                       for k, v in sim.items()}

    # 獲取接口函數
    def GetRecommendation(user):
        items = {}
        seen_items = set(train[user])
        for u, _ in sorted_user_sim[user][:K]:
            for item in train[u]:
                # 要去掉用戶見過的
                if item not in seen_items:
                    if item not in items:
                        items[item] = 0
                    items[item] += sim[user][u]
        recs = list(sorted(items.items(), key=lambda x: x[1],
                           reverse=True))[:N]
        return recs

    return GetRecommendation


# 4. 基於改進的用戶餘弦相似度的推薦
def UserIIF(train, K, N):
    '''
    :params: train, 訓練數據集
    :params: K, 超參數,設置取TopK相似用戶數目
    :params: N, 超參數,設置取TopN推薦物品數目
    :return: GetRecommendation, 推薦接口函數
    '''
    # 計算item->user的倒排索引
    item_users = {}
    for user in train:
        for item in train[user]:
            if item not in item_users:
                item_users[item] = []
            item_users[item].append(user)

    # 計算用戶相似度矩陣
    sim = {}
    num = {}
    for item in item_users:
        users = item_users[item]
        for i in range(len(users)):
            u = users[i]
            if u not in num:
                num[u] = 0
            num[u] += 1
            if u not in sim:
                sim[u] = {}
            for j in range(len(users)):
                if j == i: continue
                v = users[j]
                if v not in sim[u]:
                    sim[u][v] = 0
                # 相比UserCF,主要是改進了這裏
                sim[u][v] += 1 / math.log(1 + len(users))
    for u in sim:
        for v in sim[u]:
            sim[u][v] /= math.sqrt(num[u] * num[v])

    # 按照相似度排序
    sorted_user_sim = {k: list(sorted(v.items(), \
                               key=lambda x: x[1], reverse=True)) \
                       for k, v in sim.items()}

    # 獲取接口函數
    def GetRecommendation(user):
        items = {}
        seen_items = set(train[user])
        for u, _ in sorted_user_sim[user][:K]:
            for item in train[u]:
                # 要去掉用戶見過的
                if item not in seen_items:
                    if item not in items:
                        items[item] = 0
                    items[item] += sim[user][u]
        recs = list(sorted(items.items(), key=lambda x: x[1],
                           reverse=True))[:N]
        return recs

    return GetRecommendation


class Experiment():
    def __init__(self, M, K, N, fp='./ml-1m/ratings.dat',
                 rt='UserCF'):
        '''
        :params: M, 進行多少次實驗
        :params: K, TopK相似用戶的個數
        :params: N, TopN推薦物品的個數
        :params: fp, 數據文件路徑
        :params: rt, 推薦算法類型
        '''
        self.M = M
        self.K = K
        self.N = N
        self.fp = fp
        self.rt = rt
        self.alg = {'Random': Random, 'MostPopular': MostPopular, \
                    'UserCF': UserCF, 'UserIIF': UserIIF}

    # 定義單次實驗
    @timmer
    def worker(self, train, test):
        '''
        :params: train, 訓練數據集
        :params: test, 測試數據集
        :return: 各指標的值
        '''
        getRecommendation = self.alg[self.rt](train, self.K, self.N)
        metric = Metric(train, test, getRecommendation)
        return metric.eval()

    # 多次實驗取平均
    @timmer
    def run(self):
        metrics = {'Precision': 0, 'Recall': 0, 'Coverage': 0, 'Popularity': 0}
        dataset = Dataset(self.fp)
        for ii in range(self.M):
            train, test = dataset.splitData(self.M, ii)
            print('Experiment {}:'.format(ii))
            metric = self.worker(train, test)
            metrics = {k: metrics[k] + metric[k] for k in metrics}
        metrics = {k: metrics[k] / self.M for k in metrics}
        print('Average Result (M={}, K={}, N={}): {}'.format(\
                              self.M, self.K, self.N, metrics))


# 1. random實驗
M, N = 8, 10
K = 0  # 爲保持一致而設置,隨便填一個值
random_exp = Experiment(M, K, N, rt='Random')
random_exp.run()

# 2. MostPopular實驗
M, N = 8, 10
K = 0  # 爲保持一致而設置,隨便填一個值
mp_exp = Experiment(M, K, N, rt='MostPopular')
mp_exp.run()

# 3. UserCF實驗
M, N = 8, 10
for K in [5, 10, 20, 40, 80, 160]:
    cf_exp = Experiment(M, K, N, rt='UserCF')
    cf_exp.run()

# 4. UserIIF實驗
M, N = 8, 10
K = 80  # 與書中保持一致
iif_exp = Experiment(M, K, N, rt='UserIIF')
iif_exp.run()

參考

推薦系統代碼實現

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章