Dijkstra 算法說明與實現

Dijkstra 算法說明與實現

作者:Grey

原文地址:

博客園:Dijkstra 算法說明與實現

CSDN:Dijkstra 算法說明與實現

問題描述

問題:給定出發點,出發點到所有點的距離之和最小是多少?

注:Dijkstra 算法必須指定一個源點,每個邊的權值均爲非負數,求這個點到其他所有點的最短距離,到不了則爲正無窮, 不能有累加和爲負數的環。

題目鏈接見:LeetCode 743. Network Delay Time

主要思路

  1. 生成一個源點到各個點的最小距離表,一開始只有一條記錄,即原點到自己的最小距離爲0, 源點到其他所有點的最小距離都爲正無窮大

  2. 從距離表中拿出沒拿過記錄裏的最小記錄,通過這個點發出的邊,更新源 點到各個點的最小距離表,不斷重複這一步

  3. 源點到所有的點記錄如果都被拿過一遍,過程停止,最小距離表得到了。

關鍵優化:加強堆結構說明

完整代碼見:

class Solution {
    public static int networkDelayTime(int[][] times, int N, int K) {
        Graph graph = generate(times);
        Node from = null;
        for (Node n : graph.nodes.values()) {
            if (n.value == K) {
                from = n;
            }
        }
        HashMap<Node, Integer> map = dijkstra2(from, N);
        int sum = -1;

        for (Map.Entry<Node, Integer> entry : map.entrySet()) {
            if (entry.getValue() == 0) {
                N--;
                continue;
            }
            N--;
            if (entry.getValue() == Integer.MAX_VALUE) {
                return -1;
            } else {
                sum = Math.max(entry.getValue(), sum);
            }
        }
        // 防止出現環的形狀
        //   int[][] times = new int[][]{{1, 2, 1}, {2, 3, 2}, {1, 3, 1}};
        //        int N = 3;
        //        int K = 2;
        if (N != 0) {
            return -1;
        }
        return sum;
    }

    public static Graph generate(int[][] times) {
        Graph graph = new Graph();
        for (int[] time : times) {
            int from = time[0];
            int to = time[1];
            int weight = time[2];
            if (!graph.nodes.containsKey(from)) {
                graph.nodes.put(from, new Node(from));
            }
            if (!graph.nodes.containsKey(to)) {
                graph.nodes.put(to, new Node(to));
            }
            Node fromNode = graph.nodes.get(from);
            Node toNode = graph.nodes.get(to);
            Edge fromToEdge = new Edge(weight, fromNode, toNode);
            //Edge toFromEdge = new Edge(weight, toNode, fromNode);
            fromNode.nexts.add(toNode);
            fromNode.out++;
            //fromNode.in++;
            //toNode.out++;
            toNode.in++;
            fromNode.edges.add(fromToEdge);
            //toNode.edges.add(toFromEdge);
            graph.edges.add(fromToEdge);
            //graph.edges.add(toFromEdge);
        }

        return graph;
    }

    public static class Graph {
        public HashMap<Integer, Node> nodes;
        public HashSet<Edge> edges;

        public Graph() {
            nodes = new HashMap<>();
            edges = new HashSet<>();
        }
    }

    public static class Edge {
        public int weight;
        public Node from;
        public Node to;

        public Edge(int weight, Node from, Node to) {
            this.weight = weight;
            this.from = from;
            this.to = to;
        }
    }

    public static class Node {
        public int value;
        public int in;
        public int out;
        public ArrayList<Node> nexts;
        public ArrayList<Edge> edges;

        public Node(int value) {
            this.value = value;
            in = 0;
            out = 0;
            nexts = new ArrayList<>();
            edges = new ArrayList<>();
        }
    }

    public static Node getMinNode(HashMap<Node, Integer> distanceMap, HashSet<Node> selectedNodes) {
        int minDistance = Integer.MAX_VALUE;
        Node minNode = null;
        for (Map.Entry<Node, Integer> entry : distanceMap.entrySet()) {
            Node n = entry.getKey();
            int distance = entry.getValue();
            if (!selectedNodes.contains(n) && distance < minDistance) {
                minDistance = distance;
                minNode = n;
            }
        }
        return minNode;
    }

    public static class NodeRecord {
        public Node node;
        public int distance;

        public NodeRecord(Node node, int distance) {
            this.node = node;
            this.distance = distance;
        }
    }

    public static class NodeHeap {
        private Node[] nodes; // 實際的堆結構
        // key 某一個node, value 上面堆中的位置
        private HashMap<Node, Integer> heapIndexMap;
        // key 某一個節點, value 從源節點出發到該節點的目前最小距離
        private HashMap<Node, Integer> distanceMap;
        private int size; // 堆上有多少個點

        public NodeHeap(int size) {
            nodes = new Node[size];
            heapIndexMap = new HashMap<>();
            distanceMap = new HashMap<>();
            size = 0;
        }

        public boolean isEmpty() {
            return size == 0;
        }

        // 有一個點叫node,現在發現了一個從源節點出發到達node的距離爲distance
        // 判斷要不要更新,如果需要的話,就更新
        public void addOrUpdateOrIgnore(Node node, int distance) {
            if (inHeap(node)) {
                distanceMap.put(node, Math.min(distanceMap.get(node), distance));
                insertHeapify(node, heapIndexMap.get(node));
            }
            if (!isEntered(node)) {
                nodes[size] = node;
                heapIndexMap.put(node, size);
                distanceMap.put(node, distance);
                insertHeapify(node, size++);
            }
        }

        public NodeRecord pop() {
            NodeRecord nodeRecord = new NodeRecord(nodes[0], distanceMap.get(nodes[0]));
            swap(0, size - 1);
            heapIndexMap.put(nodes[size - 1], -1);
            distanceMap.remove(nodes[size - 1]);
            // free C++同學還要把原本堆頂節點析構,對java同學不必
            nodes[size - 1] = null;
            heapify(0, --size);
            return nodeRecord;
        }

        private void insertHeapify(Node node, int index) {
            while (distanceMap.get(nodes[index]) < distanceMap.get(nodes[(index - 1) / 2])) {
                swap(index, (index - 1) / 2);
                index = (index - 1) / 2;
            }
        }

        private void heapify(int index, int size) {
            int left = index * 2 + 1;
            while (left < size) {
                int smallest = left + 1 < size && distanceMap.get(nodes[left + 1]) < distanceMap.get(nodes[left]) ? left + 1 : left;
                smallest = distanceMap.get(nodes[smallest]) < distanceMap.get(nodes[index]) ? smallest : index;
                if (smallest == index) {
                    break;
                }
                swap(smallest, index);
                index = smallest;
                left = index * 2 + 1;
            }
        }

        private boolean isEntered(Node node) {
            return heapIndexMap.containsKey(node);
        }

        private boolean inHeap(Node node) {
            return isEntered(node) && heapIndexMap.get(node) != -1;
        }

        private void swap(int index1, int index2) {
            heapIndexMap.put(nodes[index1], index2);
            heapIndexMap.put(nodes[index2], index1);
            Node tmp = nodes[index1];
            nodes[index1] = nodes[index2];
            nodes[index2] = tmp;
        }
    }

    // 改進後的dijkstra算法
    // 從head出發,所有head能到達的節點,生成到達每個節點的最小路徑記錄並返回
    public static HashMap<Node, Integer> dijkstra2(Node head, int size) {
        NodeHeap nodeHeap = new NodeHeap(size);
        nodeHeap.addOrUpdateOrIgnore(head, 0);
        HashMap<Node, Integer> result = new HashMap<>();
        while (!nodeHeap.isEmpty()) {
            NodeRecord record = nodeHeap.pop();
            Node cur = record.node;
            int distance = record.distance;
            for (Edge edge : cur.edges) {
                nodeHeap.addOrUpdateOrIgnore(edge.to, edge.weight + distance);
            }
            result.put(cur, distance);
        }
        return result;
    }
}

代碼說明:本題未採用題目給的二維數組的圖結構,而是把二維數組轉換成自己熟悉的圖結構,再進行dijkstra算法。

更多

算法和數據結構筆記

參考資料

算法和數據結構體系班-左程雲

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章