沒練過這個項目,怎麼做AI工程師?

從年初起,幾家國際大廠的開發者大會,無論是微軟Build、Facebook F8還是稍後的Google I/O,莫不把“AI優先”的大旗扯上雲霄。

如果這一波AI大潮只是空喊幾句口號,空提幾個戰略,空有幾家炙手可熱的創業公司,那當然成不了什麼大氣候。但風浪之下,我們看到的卻是,Google一線的各大業務紛紛改用深度學習,落伍移動時代的微軟則已拉起一支近萬人的AI隊伍。而國內一線大廠的情況,更是把AI牢牢把握住,試圖再創高峯。

今天本文將分享一篇AI入門實戰的項目經驗分享,手把手帶你進入AI的世界,讓你消除對AI技術壁壘過高的恐懼~

【AI項目實戰】多標籤圖像分類競賽小試牛刀

初次拿到這個題目,想了想做過了貓狗大戰這樣的二分類,也做過cifar-10這樣的多分類,類似本次比賽的題目多標籤圖像分類的確沒有嘗試過。6941個標籤,每張圖片可能沒有標籤也可能存在6941個標籤,即各個標籤之間是不存在互斥關係的,所以最終分類的損失函數不能用softmax而必須要用sigmoid。然後把分類層預測6941個神經元,每個神經元用sigmoid函數返回是否存在某個標籤即可。

來蹚下整個流程看看,在jupyter notebook上做得比較亂,但是整個流程還是可以看出來的。深度學習模型用的Keras。

先導入train_csv數據,這裏用的是最初版的訓練csv文件,img_path裏存在地址,後面做了處理。

code

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

from glob import glob
from tqdm import tqdm

import cv2
from PIL import Image

train_path = 'visual_china_train.csv'
train_df = pd.read_csv(train_path)
train_df.head()
code
train_df.shape
#(35000, 2)

可以看到總共有35000張訓練圖片,第一列爲圖片名稱(帶地址,需處理),第二列爲圖片對應標籤。

來看下是不是的確只有6941個標籤:

code

tags = []
for i in range(train_df['tags'].shape[0]):
    for tag in train_df['tags'].iloc[i].split(','):
        tags.append(tag)

tags = set(tags)
len(tags)
#6941

事實證明標籤總數無誤,可以放心大膽地繼續進行下去了。

然後我處理了下圖片名稱,並存到了img_paths列表裏。

code

#如果使用的是官方後來更新的visual_china_train.csv,可以直接使用最後一行代碼
for i in range(35000):
    train_df['img_path'].iloc[i] = train_df['img_path'].iloc[i].split('/')[-1]

img_paths = list(train_df['img_path'])

定義三個函數,其中:

  • hash_tag函數讀入valid_tags.txt文件,並存入字典,形成索引和標籤的對照。
  • load_ytrain函數讀入tag_train.npz文件,並返回訓練集的y_train,形式爲ndarray,shape爲(35000, 6941),即35000張圖片和對應標籤的one-hot編碼。
  • arr2tag函數將預測結果的y_pred轉變成對應的中文標籤。(實際上最後還需要做下處理)

code

def hash_tag(filepath):
    fo = open(filepath, "r",encoding='utf-8')
    hash_tag = {}
    i = 0
    for line in fo.readlines():     #依次讀取每行  
        line = line.strip()         #去掉每行頭尾空白  
        hash_tag[i] = line
        i += 1
    return hash_tag

def load_ytrain(filepath):  
    y_train = np.load(filepath)
    y_train = y_train['tag_train']

    return y_train

def arr2tag(arr):
    tags = []
    for i in range(arr.shape[0]):
        tag = []
        index = np.where(arr[i] > 0.5)  
        index = index[0].tolist()
        tag =  [hash_tag[j] for j in index]

        tags.append(tag)
    return tags

讀入valid_tags.txt,並生成索引和標籤的映射。

code

filepath = "valid_tags.txt"
hash_tag = hash_tag(filepath)

hash_tag[1]
#'0到1個月'

載入y_train

code

y_train = load_ytrain('tag_train.npz')
y_train.shape
#(35000, 6941)

前期準備工作差不多做完了,開始導入訓練集。此處有個坑,即原始訓練集中存在CMYK格式的圖片,傳統圖片處理一般爲RGB格式,所以使用Image庫中的convert函數對非RGB格式的圖片進行轉換。

code

nub_train = 5000  #可修改,前期嘗試少量數據驗證模型
X_train = np.zeros((nub_train,224,224,3),dtype=np.uint8)
i = 0

for img_path in img_paths[:nub_train]:
    img = Image.open('train/' + img_path)
    if img.mode != 'RGB':
        img = img.convert('RGB')
    img = img.resize((224,224))
    arr = np.asarray(img)
    X_train[i,:,:,:] = arr
    i += 1

訓練集導入完成,來看圖片的樣子,判斷下圖片有沒有讀入錯誤之類的問題。

code

fig,axes = plt.subplots(6,6,figsize=(20, 20))

j = 0
for i,img in enumerate(X_train[:36]):
    axes[i//6,j%6].imshow(img)
    j+=1

看樣子還不錯,go on! 訓練集的X_train、y_train都拿到了,分割出驗證集。這裏要說明一下,官方的y_train裏圖片名稱與X_train裏圖片名稱是對應的所以可以直接分割。

code

from sklearn.model_selection import train_test_split
X_train2,X_val,y_train2,y_val = train_test_split(X_train, y_train[:nub_train], test_size=0.2, random_state=2018)

數據準備完成,開始搭建模型。咳咳,先從簡單的入手哈,此模型仿tinymind上一次的漢字書法識別大賽中“真的學不會”大佬的結構來搭的,又加了些自己的東西,反正簡單模型試試水嘛。

code

from keras.layers import *
from keras.models import *
from keras.optimizers import *
from keras.callbacks import *

def bn_prelu(x):
    x = BatchNormalization()(x)
    x = PReLU()(x)
    return x

def build_model(out_dims, input_shape=(224, 224, 3)):
    inputs_dim = Input(input_shape)
    x = Lambda(lambda x: x / 255.0)(inputs_dim) #在模型裏進行歸一化預處理

    x = Conv2D(16, (3, 3), strides=(2, 2), padding='same')(x)
    x = bn_prelu(x)
    x = Conv2D(16, (3, 3), strides=(1, 1), padding='same')(x)
    x = bn_prelu(x)
    x = MaxPool2D(pool_size=(2, 2))(x)

    x = Conv2D(32, (3, 3), strides=(1, 1), padding='same')(x)
    x = bn_prelu(x)
    x = Conv2D(32, (3, 3), strides=(1, 1), padding='same')(x)
    x = bn_prelu(x)
    x = MaxPool2D(pool_size=(2, 2))(x)

    x = Conv2D(64, (3, 3), strides=(1, 1), padding='same')(x)
    x = bn_prelu(x)
    x = MaxPool2D(pool_size=(2, 2))(x)

    x = Conv2D(128, (3, 3), strides=(1, 1), padding='same')(x)
    x = bn_prelu(x)
    x = GlobalAveragePooling2D()(x)

    dp_1 = Dropout(0.5)(x)

    fc2 = Dense(out_dims)(dp_1)
    fc2 = Activation('sigmoid')(fc2) #此處注意,爲sigmoid函數

    model = Model(inputs=inputs_dim, outputs=fc2)
    return model

看下模型結構:

code

model = build_model(6941)
model.summary()
_________________________________________________________________Layer (type)                 Output Shape              Param #   
=================================================================input_1 (InputLayer)         (None, 224, 224, 3)       0         
_________________________________________________________________lambda_1 (Lambda)            (None, 224, 224, 3)       0         
_________________________________________________________________conv2d_1 (Conv2D)            (None, 112, 112, 16)      448       
_________________________________________________________________batch_normalization_1 (Batch (None, 112, 112, 16)      64        
_________________________________________________________________p_re_lu_1 (PReLU)            (None, 112, 112, 16)      200704    
_________________________________________________________________conv2d_2 (Conv2D)            (None, 112, 112, 16)      2320      
_________________________________________________________________batch_normalization_2 (Batch (None, 112, 112, 16)      64        
_________________________________________________________________p_re_lu_2 (PReLU)            (None, 112, 112, 16)      200704    
_________________________________________________________________max_pooling2d_1 (MaxPooling2 (None, 56, 56, 16)        0         
_________________________________________________________________conv2d_3 (Conv2D)            (None, 56, 56, 32)        4640      
_________________________________________________________________batch_normalization_3 (Batch (None, 56, 56, 32)        128       
_________________________________________________________________p_re_lu_3 (PReLU)            (None, 56, 56, 32)        100352    
_________________________________________________________________conv2d_4 (Conv2D)            (None, 56, 56, 32)        9248      
_________________________________________________________________batch_normalization_4 (Batch (None, 56, 56, 32)        128       
_________________________________________________________________p_re_lu_4 (PReLU)            (None, 56, 56, 32)        100352    
_________________________________________________________________max_pooling2d_2 (MaxPooling2 (None, 28, 28, 32)        0         
_________________________________________________________________conv2d_5 (Conv2D)            (None, 28, 28, 64)        18496     
_________________________________________________________________batch_normalization_5 (Batch (None, 28, 28, 64)        256       
_________________________________________________________________p_re_lu_5 (PReLU)            (None, 28, 28, 64)        50176     
_________________________________________________________________max_pooling2d_3 (MaxPooling2 (None, 14, 14, 64)        0         
_________________________________________________________________conv2d_6 (Conv2D)            (None, 14, 14, 128)       73856     
_________________________________________________________________batch_normalization_6 (Batch (None, 14, 14, 128)       512       
_________________________________________________________________p_re_lu_6 (PReLU)            (None, 14, 14, 128)       25088     
_________________________________________________________________global_average_pooling2d_1 ( (None, 128)               0         
_________________________________________________________________dropout_1 (Dropout)          (None, 128)               0         
_________________________________________________________________dense_1 (Dense)              (None, 6941)              895389    
_________________________________________________________________activation_1 (Activation)    (None, 6941)              0         
=================================================================Total params: 1,682,925
Trainable params: 1,682,349
Non-trainable params: 576_________________________________________________________________

由於比賽要求裏最終得分標準是fmeasure而不是acc,故網上找來一段代碼用以監測訓練中查準率、查全率、fmeasure的變化。原地址找不到了,故而無法貼上,罪過罪過。

code

import keras.backend as K

def precision(y_true, y_pred):
    # Calculates the precision
    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
    predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
    precision = true_positives / (predicted_positives + K.epsilon())
    return precision

def recall(y_true, y_pred):
    # Calculates the recall
    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
    possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
    recall = true_positives / (possible_positives + K.epsilon())
    return recall

def fbeta_score(y_true, y_pred, beta=1):
    # Calculates the F score, the weighted harmonic mean of precision and recall.
    if beta < 0:
        raise ValueError('The lowest choosable beta is zero (only precision).')

    # If there are no true positives, fix the F score at 0 like sklearn.
    if K.sum(K.round(K.clip(y_true, 0, 1))) == 0:
        return 0

    p = precision(y_true, y_pred)
    r = recall(y_true, y_pred)
    bb = beta ** 2
    fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon())
    return fbeta_score

def fmeasure(y_true, y_pred):
    # Calculates the f-measure, the harmonic mean of precision and recall.
    return fbeta_score(y_true, y_pred, beta=1)

這裏稍做圖片增強,用Keras裏的ImageDataGenerator函數,同時還可生成器方法進行訓練。

code

from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(width_shift_range = 0.1, 
                                 height_shift_range = 0.1, 
                                 zoom_range = 0.1)
val_datagen = ImageDataGenerator()     #驗證集不做圖片增強

batch_size = 8

train_generator = train_datagen.flow(X_train2,y_train2,batch_size=batch_size,shuffle=False) 
val_generator = val_datagen.flow(X_val,y_val,batch_size=batch_size,shuffle=False)

開始訓練。這裏在ModelCheckpoint裏設置monitor監控feasure,mode爲max,不再以最低loss作爲模型最優的判斷標準(個人做法,好壞可自行實驗判斷)。

code

checkpointer = ModelCheckpoint(filepath='weights_best_simple_model.hdf5', 
                            monitor='val_fmeasure',verbose=1, save_best_only=True, mode='max')
reduce = ReduceLROnPlateau(monitor='val_fmeasure',factor=0.5,patience=2,verbose=1,min_delta=1e-4,mode='max')

model.compile(optimizer = 'adam',
           loss='binary_crossentropy',
           metrics=['accuracy',fmeasure,recall,precision])

epochs = 20

history = model.fit_generator(train_generator,
       validation_data = val_generator,
       epochs=epochs,
       callbacks=[checkpointer,reduce],
       verbose=1)

訓練了20個epoch,這裏給出第20個epoch時的訓練結果,可以看到,val_loss 0.0233,其實已經挺低了;val_acc0.9945,參考意義不大(暫時不清楚有什麼參考意義~~);val_fmeasure0.17,嗯。。任重道遠啊。

訓練了20個epoch,這裏給出第20個epoch時的訓練結果,可以看到,val_loss 0.0233,其實已經挺低了;val_acc0.9945,參考意義不大(暫時不清楚有什麼參考意義~~);val_fmeasure0.17,嗯。。任重道遠啊。

Epoch 20/20500/500 [==============================] - 48s 96ms/step - loss: 0.0233 - acc: 0.9946 - fmeasure: 0.1699 - recall: 0.0970 - precision: 0.7108 - val_loss: 0.0233 - val_acc: 0.9946 - val_fmeasure: 0.1700 - val_recall: 0.0968 - val_precision: 0.7162
    Epoch 00020: val_fmeasure did not improve from 0.17148

以上只給出5000張圖片的簡單模型訓練方法,但數據處理,搭建模型以及訓練過程已經很清晰明瞭了,後面的進階之路就憑大家各顯身手了。

然後開始進行預測,導入測試集(當然是在訓練集全部訓練之後再進行測試集的預測)。

code

nub_test = len(glob('valid/*'))
X_test = np.zeros((nub_test,224,224,3),dtype=np.uint8)
path = []
i = 0
for img_path in tqdm(glob('valid/*')):
    img = Image.open(img_path)
    if img.mode != 'RGB':
        img = img.convert('RGB')
    img = img.resize((224,224))
    arr = np.asarray(img)
    X_test[i,:,:,:] = arr
    i += 1

100%|██████████████████████████████████████████████████████████████████████████████| 8000/8000 [02:18&lt;00:00, 57.91it/s]

預測測試集並利用arr2tag函數將結果轉爲中文標籤,以便生成提交文件。

code

y_pred = model.predict(X_test)
y_tags = arr2tag(y_pred)

生成提交文件:

code

import os
img_name = os.listdir('valid/')
img_name[:10]
['000effcf2091ae3895074838b7e5f571186ab362.jpg',
 '0014455e5fbfd0961039fe23675debbb1a7b2308.jpg',
 '002138959ee7a14eb2860100392a384f8a85425f.jpg',
 '002414411ce17c6c7ab5d36dd3f956d0691ba495.jpg',
 '002780359fda7f09e6d1fc52d88aff90c6e8298b.jpg',
 '002ad24891ddf815bb86e4eca34415b1b44c9e4b.jpg',
 '002c284f94299bcee51733f7d6b17f3e4792d8c5.jpg',
 '002cf4b15887f32b688113a2a7a3f5786896d019.jpg',
 '003d4c12160b90fbbb2bd034ee30c251a45d9037.jpg',
 '0043ab4460cc79bfbea3db69d2a55d5f35600a37.jpg']

arr2tag函數得到的每張圖片的標籤是list格式,需轉成str,在這裏操作。經實驗,windows中的方法與ubuntu中不同,後面也給出了ubuntu中本步的處理方法。

code

# windows
import pandas as pd

df = pd.DataFrame({'img_path':img_name, 'tags':y_tags})
for i in range(df['tags'].shape[0]):
    df['tags'].iloc[i] = ','.join(str(e) for e in  df['tags'].iloc[i])
df.to_csv('submit.csv',index=None)

df.head()

code

# #Ubuntu
import pandas as pd

df = pd.DataFrame({'img_path':img_name, 'tags':y_tags})
for i in range(df['tags'].shape[0]):
    df['tags'].iloc[i] = df['tags'].iloc[i][2:-2].replace('\'',"").replace('\'',"")
df.to_csv('submit.csv',index=None)

整篇到此結束,有幾點要說的:

  1. 提高方法。不用說,肯定是上預訓練模型,可能再進行模型融合效果會更好。官方大大說整個標籤由於人工標註,可能會跟機器預測出來的有別差,畢竟看預測結果中出現的 “一個人,人,僅一個女人,僅一個青年女人,僅女人,僅成年人” ,如果由人類來標註可能不會這麼囉嗦~~所以可以考慮NLP方法對標籤進行一些處理(我不會)。另外網上查到了個詭異的做法,說可以把fmeasure變成損失函數去訓練模型(fmeasure不可導),我想如果有辦法做到應該效果不錯吧。
  2. 不足之處。訓練過程中監控fmeasure和監控loss的做法,看上去應該是fmeasure沒錯,不過自己對於這塊研究不夠,只能憑感覺在做,各位看官可自由發揮。
  3. 整篇文章代碼只有查準率、查全率、fmeasure部分爲網上摘取,其他均爲原創代碼(略有借鑑),其實是想說,代碼可能有些地方稚嫩,還望各位大佬們海涵。
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章