tf.nn.dynamic_rnn返回值詳解

函數原型

tf.nn.dynamic_rnn(
    cell,
    inputs,
    sequence_length=None,
    initial_state=None,
    dtype=None,
    parallel_iterations=None,
    swap_memory=False,
    time_major=False,
    scope=None
)

參數講解:

  • cell: RNNCell的一個實例.

  • inputs: RNN輸入.

    • 如果time_major == False(默認), 則是一個shape爲[batch_size, max_time, input_size]的Tensor,或者這些元素的嵌套元組。
    • 如果time_major == True,則是一個shape爲[max_time, batch_size, input_size]的Tensor,或這些元素的嵌套元組。
  • sequence_length: (可選)大小爲[batch_size],數據的類型是int32/int64向量。如果當前時間步的index超過該序列的實際長度時,則該時間步不進行計算,RNN的state複製上一個時間步的,同時該時間步的輸出全部爲零。

  • initial_state: (可選)RNN的初始state(狀態)。如果cell.state_size(一層的RNNCell)是一個整數,那麼它必須是一個具有適當類型和形狀的張量[batch_size,cell.state_size]。如果cell.state_size是一個元組(多層的RNNCell,如MultiRNNCell),那麼它應該是一個張量元組,每個元素的形狀爲[batch_size,s] for s in cell.state_size。

  • time_major: inputs 和outputs 張量的形狀格式。如果爲True,則這些張量都應該是(都會是)[max_time, batch_size, depth]。如果爲false,則這些張量都應該是(都會是)[batch_size,max_time, depth]。time_major=true說明輸入和輸出tensor的第一維是max_time。否則爲batch_size。

使用time_major =True更有效,因爲它避免了RNN計算開始和結束時的轉置.但是,大多數TensorFlow數據都是batch-major,因此默認情況下,此函數接受輸入並以batch-major形式發出輸出.

返回值:
一對(outputs, state),其中:

  • **outputs:**RNN輸出Tensor.

    • 如果time_major == False(默認),這將是shape爲[batch_size, max_time, cell.output_size]的Tensor.
    • 如果time_major == True,這將是shape爲[max_time, batch_size, cell.output_size]的Tensor.
  • state: 最終的狀態.

    • 一般情況下state的形狀爲 [batch_size, cell.output_size ]
    • 如果cell是LSTMCells,則state將是包含每個單元格的LSTMStateTuple的元組,state的形狀爲[2,batch_size, cell.output_size ]

實列講解

import tensorflow as tf
import numpy as np
 
n_steps = 2
n_inputs = 3
n_neurons = 5     # 也就是hidden_size
 
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)
 
seq_length = tf.placeholder(tf.int32, [None])
outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32,
                                    sequence_length=seq_length)
 
init = tf.global_variables_initializer()
 
X_batch = np.array([
        # step 0     step 1
        [[0, 1, 2], [9, 8, 7]], # instance 1
        [[3, 4, 5], [0, 0, 0]], # instance 2 
        [[6, 7, 8], [6, 5, 4]], # instance 3
        [[9, 0, 1], [3, 2, 1]], # instance 4
    ])
seq_length_batch = np.array([2, 1, 2, 2])
 
with tf.Session() as sess:
    init.run()
    outputs_val, states_val = sess.run(
        [outputs, states], feed_dict={X: X_batch, seq_length: seq_length_batch})
    print("outputs_val.shape:", outputs_val.shape, "states_val.shape:", states_val.shape)
    print("outputs_val:", outputs_val, "states_val:", states_val)

輸出

outputs_val.shape: (4, 2, 5) states_val.shape: (4, 5)
outputs_val: 
[[[ 0.53073734 -0.61281306 -0.5437517   0.7320347  -0.6109526 ]
  [ 0.99996936  0.99990636 -0.9867181   0.99726075 -0.99999976]]
 
 [[ 0.9931584   0.5877845  -0.9100412   0.988892   -0.9982337 ]
  [ 0.          0.          0.          0.          0.        ]]
 
 [[ 0.99992317  0.96815354 -0.985101    0.9995968  -0.9999936 ]
  [ 0.99948144  0.9998127  -0.57493806  0.91015154 -0.99998355]]
 
 [[ 0.99999255  0.9998929   0.26732785  0.36024097 -0.99991137]
  [ 0.98875254  0.9922327   0.6505734   0.4732064  -0.9957567 ]]] 
states_val:
 [[ 0.99996936  0.99990636 -0.9867181   0.99726075 -0.99999976]
 [ 0.9931584   0.5877845  -0.9100412   0.988892   -0.9982337 ]
 [ 0.99948144  0.9998127  -0.57493806  0.91015154 -0.99998355]
 [ 0.98875254  0.9922327   0.6505734   0.4732064  -0.9957567 ]]

上面代碼搭建的RNN網絡如下圖所示
在這裏插入圖片描述
上圖中:橢圓表示tensor,矩形表示RNN cell。

首先tf.nn.dynamic_rnn()time_major是默認的false,故輸入X應該是一個[batch_sizestepinput_size]=[423][batch\_size,step,input\_size] = [4,2,3]的tensor,注意我們這裏調用的是BasicRNNCell,只有一層循環網絡,outputs是最後一層每個step的輸出,它的結構是[batch_sizestepn_neurons]=[425][batch\_size,step,n\_neurons] = [4,2,5]states是每一層的最後那個step的輸出,由於本例中,我們的循環網絡只有一個隱藏層,所以它就代表這一層的最後那個step的輸出,因此它和step的大小是沒有關係的,我們的X有4個樣本組成,隱層神經元個數爲n_neurons是5,因此states的結構就是[batch_sizen_neurons]=[45][batch\_size,n\_neurons] = [4,5],最後我們觀察數據,states的每條數據正好就是outputs的最後一個step的輸出。

下面我們繼續講解多個隱藏層的情況,這裏是三個隱藏層,注意我們這裏仍然是調用BasicRNNCell

import tensorflow as tf
import numpy as np
 
n_steps = 2
n_inputs = 3
n_neurons = 5
n_layers = 3
 
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
seq_length = tf.placeholder(tf.int32, [None])
 
layers = [tf.contrib.rnn.BasicRNNCell(num_units=n_neurons,
                                      activation=tf.nn.relu)
          for layer in range(n_layers)]
multi_layer_cell = tf.contrib.rnn.MultiRNNCell(layers)
outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32, sequence_length=seq_length)
 
init = tf.global_variables_initializer()
 
X_batch = np.array([
        # step 0     step 1
        [[0, 1, 2], [9, 8, 7]], # instance 1
        [[3, 4, 5], [0, 0, 0]], # instance 2 (padded with zero vectors)
        [[6, 7, 8], [6, 5, 4]], # instance 3
        [[9, 0, 1], [3, 2, 1]], # instance 4
    ])
 
seq_length_batch = np.array([2, 1, 2, 2])
 
with tf.Session() as sess:
    init.run()
    outputs_val, states_val = sess.run(
        [outputs, states], feed_dict={X: X_batch, seq_length: seq_length_batch})
    print("outputs_val.shape:", outputs, "states_val.shape:", states)
    print("outputs_val:", outputs_val, "states_val:", states_val)

輸出

outputs_val.shape: 
Tensor("rnn/transpose_1:0", shape=(?, 2, 5), dtype=float32) 
 
states_val.shape: 
(<tf.Tensor 'rnn/while/Exit_3:0' shape=(?, 5) dtype=float32>, 
 <tf.Tensor 'rnn/while/Exit_4:0' shape=(?, 5) dtype=float32>, 
 <tf.Tensor 'rnn/while/Exit_5:0' shape=(?, 5) dtype=float32>)
 
outputs_val:
 [[[0.         0.         0.         0.         0.        ]
  [0.         0.18740742 0.         0.2997518  0.        ]]
 
 [[0.         0.07222144 0.         0.11551574 0.        ]
  [0.         0.         0.         0.         0.        ]]
 
 [[0.         0.13463384 0.         0.21534224 0.        ]
  [0.03702604 0.18443246 0.         0.34539366 0.        ]]
 
 [[0.         0.54511094 0.         0.8718864  0.        ]
  [0.5382122  0.         0.04396425 0.4040263  0.        ]]] 
 
states_val:
 (array([[0.        , 0.83723307, 0.        , 0.        , 2.8518028 ],
       [0.        , 0.1996038 , 0.        , 0.        , 1.5456247 ],
       [0.        , 1.1372368 , 0.        , 0.        , 0.832613  ],
       [0.        , 0.7904129 , 2.4675028 , 0.        , 0.36980057]],
      dtype=float32), 
  array([[0.6524607 , 0.        , 0.        , 0.        , 0.        ],
       [0.25143963, 0.        , 0.        , 0.        , 0.        ],
       [0.5010576 , 0.        , 0.        , 0.        , 0.        ],
       [0.        , 0.3166597 , 0.4545995 , 0.        , 0.        ]],
      dtype=float32), 
  array([[0.        , 0.18740742, 0.        , 0.2997518 , 0.        ],
       [0.        , 0.07222144, 0.        , 0.11551574, 0.        ],
       [0.03702604, 0.18443246, 0.        , 0.34539366, 0.        ],
       [0.5382122 , 0.        , 0.04396425, 0.4040263 , 0.        ]],
      dtype=float32))

多層的RNN網絡如下圖所示
在這裏插入圖片描述
我們說過,outputs是最後一層的輸出,即 [batch_sizestepn_neurons]=[425][batch\_size,step,n\_neurons] = [4,2,5]
states是每一層的最後一個step的輸出,即三個結構爲 [batch_sizen_neurons]=[45][batch\_size,n\_neurons] = [4,5] 的tensor繼續觀察數據,states中的最後一個array,正好是outputs的最後那個step的輸出。

下面我們繼續講當由BasicLSTMCell構造單元工廠的時候,只講多層的情況,我們只需要將上面的 BasicRNNCell替換成BasicLSTMCell就行了,打印信息如下:

outputs_val.shape: 
Tensor("rnn/transpose_1:0", shape=(?, 2, 5), dtype=float32) 
 
states_val.shape:
(LSTMStateTuple(c=<tf.Tensor 'rnn/while/Exit_3:0' shape=(?, 5) dtype=float32>, 
                h=<tf.Tensor 'rnn/while/Exit_4:0' shape=(?, 5) dtype=float32>), 
LSTMStateTuple(c=<tf.Tensor 'rnn/while/Exit_5:0' shape=(?, 5) dtype=float32>, 
               h=<tf.Tensor 'rnn/while/Exit_6:0' shape=(?, 5) dtype=float32>), 
LSTMStateTuple(c=<tf.Tensor 'rnn/while/Exit_7:0' shape=(?, 5) dtype=float32>, 
               h=<tf.Tensor 'rnn/while/Exit_8:0' shape=(?, 5) dtype=float32>))
 
outputs_val: 
[[[1.2949290e-04 0.0000000e+00 2.7623639e-04 0.0000000e+00 0.0000000e+00]
  [9.4675866e-05 0.0000000e+00 2.0214770e-04 0.0000000e+00 0.0000000e+00]]
 
 [[4.3100454e-06 4.2123037e-07 1.4312843e-06 0.0000000e+00 0.0000000e+00]
  [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]]
 
 [[0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]
  [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]]
 
 [[0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]
  [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]]] 
 
states_val: 
(LSTMStateTuple(
c=array([[0.        , 0.        , 0.04676079, 0.04284539, 0.        ],
       [0.        , 0.        , 0.0115245 , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.        ]],
      dtype=float32), 
h=array([[0.        , 0.        , 0.00035096, 0.04284406, 0.        ],
       [0.        , 0.        , 0.00142574, 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        , 0.        , 0.        ]],
      dtype=float32)), 
LSTMStateTuple(
c=array([[0.0000000e+00, 1.0477135e-02, 4.9871090e-03, 8.2785974e-04,
        0.0000000e+00],
       [0.0000000e+00, 2.3306280e-04, 0.0000000e+00, 9.9445322e-05,
        5.9535629e-05],
       [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
        0.0000000e+00],
       [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
        0.0000000e+00]], dtype=float32), 
h=array([[0.00000000e+00, 5.23016974e-03, 2.47756205e-03, 4.11730434e-04,
        0.00000000e+00],
       [0.00000000e+00, 1.16522635e-04, 0.00000000e+00, 4.97301044e-05,
        2.97713632e-05],
       [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00],
       [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
        0.00000000e+00]], dtype=float32)), 
LSTMStateTuple(
c=array([[1.8937115e-04, 0.0000000e+00, 4.0442235e-04, 0.0000000e+00,
        0.0000000e+00],
       [8.6200516e-06, 8.4243663e-07, 2.8625946e-06, 0.0000000e+00,
        0.0000000e+00],
       [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
        0.0000000e+00],
       [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
        0.0000000e+00]], dtype=float32), 
h=array([[9.4675866e-05, 0.0000000e+00, 2.0214770e-04, 0.0000000e+00,
        0.0000000e+00],
       [4.3100454e-06, 4.2123037e-07, 1.4312843e-06, 0.0000000e+00,
        0.0000000e+00],
       [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
        0.0000000e+00],
       [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
        0.0000000e+00]], dtype=float32)))

LSTM的網絡結構如下圖:
在這裏插入圖片描述
一個LSTM cell有兩個狀態CtC_{t}hth_{t},而不是像一個RNN cell一樣只有hth_{t}
關於LSTM的講解可以看博客:LSTM理論知識講解
在tensorflow中,將一個LSTM cell的CtC_{t}hth_{t}合在一起,稱爲LSTMStateTuple
因此我們的states包含三個LSTMStateTuple,每一個LSTMStateTuple表示每一層的最後一個step的輸出,這個輸出有兩個信息,一個是hth_{t}表示短期記憶信息,一個是CtC_{t}表示長期記憶信息。維度都是[batch_size,n_neurons] = [4,5],states的最後一個LSTMStateTuple中的hth_{t}就是outputs的最後一個step的輸出

參考博客:https://blog.csdn.net/junjun150013652/article/details/81331448

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章