牛頓法

平時經常看到牛頓法怎樣怎樣,一直不得要領,今天下午查了一下維基百科,寫寫我的認識,很多地方是直觀理解,並沒有嚴謹的證明。在我看來,牛頓法至少有兩個應用方向,1、求方程的根,2、最優化。牛頓法涉及到方程求導,下面的討論均是在連續可微的前提下討論。

 

1、求解方程。

並不是所有的方程都有求根公式,或者求根公式很複雜,導致求解困難。利用牛頓法,可以迭代求解。

原理是利用泰勒公式,在x0處展開,且展開到一階,即f(x) = f(x0)+(x-x0)f'(x0)

求解方程f(x)=0,即f(x0)+(x-x0)*f'(x0)=0,求解x = x1=x0-f(x0)/f'(x0),因爲這是利用泰勒公式的一階展開,f(x) = f(x0)+(x-x0)f'(x0)處並不是完全相等,而是近似相等,這裏求得的x1並不能讓f(x)=0,只能說f(x1)的值比f(x0)更接近f(x)=0,於是乎,迭代求解的想法就很自然了,可以進而推出x(n+1)=x(n)-f(x(n))/f'(x(n)),通過迭代,這個式子必然在f(x*)=0的時候收斂。整個過程如下圖:

 

2、牛頓法用於最優化

在最優化的問題中,線性最優化至少可以使用單純行法求解,但對於非線性優化問題,牛頓法提供了一種求解的辦法。假設任務是優化一個目標函數f,求函數f的極大極小問題,可以轉化爲求解函數f的導數f'=0的問題,這樣求可以把優化問題看成方程求解問題(f'=0)。剩下的問題就和第一部分提到的牛頓法求解很相似了。

這次爲了求解f'=0的根,把f(x)的泰勒展開,展開到2階形式:

這個式子是成立的,當且僅當 Δx 無線趨近於0。此時上式等價與:

求解:

得出迭代公式:

一般認爲牛頓法可以利用到曲線本身的信息,比梯度下降法更容易收斂(迭代更少次數),如下圖是一個最小化一個目標方程的例子,紅色曲線是利用牛頓法迭代求解,綠色曲線是利用梯度下降法求解。

在上面討論的是2維情況,高維情況的牛頓迭代公式是:

其中H是hessian矩陣,定義爲:

 

高維情況依然可以用牛頓迭代求解,但是問題是Hessian矩陣引入的複雜性,使得牛頓迭代求解的難度大大增加,但是已經有了解決這個問題的辦法就是Quasi-Newton methond,不再直接計算hessian矩陣,而是每一步的時候使用梯度向量更新hessian矩陣的近似。Quasi-Newton method的詳細情況我還沒完全理解,且聽下回分解吧。。。

 

 

 

 

 

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章