kaggle編碼categorical feature總結

kaggle競賽本質上是套路的競賽。這篇文章講講kaggle競賽裏categorical feature的常用處理套路,主要基於樹模型(lightgbm,xgboost, etc.)。重點是target encoding 和 beta target encoding。

總結:

  • label encoding

    • 特徵存在內在順序 (ordinal feature)
  • one hot encoding

    • 特徵無內在順序,category數量 < 4
  • target encoding (mean encoding, likelihood encoding, impact encoding)

    • 特徵無內在順序,category數量 > 4
  • beta target encoding

    • 特徵無內在順序,category數量 > 4, K-fold cross validation
  • 不做處理(模型自動編碼)

    • CatBoost,lightgbm

\1. Label encoding

對於一個有m個category的特徵,經過label encoding以後,每個category會映射到0到m-1之間的一個數。label encoding適用於ordinal feature (特徵存在內在順序)。

代碼:

# train -> training dataframe
# test -> test dataframe
# cat_cols -> categorical columns

for col in cat_cols:
    le = LabelEncoder()
    le.fit(np.concatenate([train[col], test[col]]))
    train[col] = le.transform(train[col])
    test[col] = le.transform(test[col])

\2. One-hot encoding (OHE)

對於一個有m個category的特徵,經過獨熱編碼(OHE)處理後,會變爲m個二元特徵,每個特徵對應於一個category。這m個二元特徵互斥,每次只有一個激活。

獨熱編碼解決了原始特徵缺少內在順序的問題,但是缺點是對於high-cardinality categorical feature (category數量很多),編碼之後特徵空間過大(此處可以考慮PCA降維),而且由於one-hot feature 比較unbalanced,樹模型裏每次的切分增益較小,樹模型通常需要grow very deep才能得到不錯的精度。因此OHE一般用於category數量 <4的情況。

參考:Using Categorical Data with One Hot Encoding

代碼:

# train -> training dataframe
# test -> test dataframe
# cat_cols -> categorical columns

df = train.append(test).reset_index()
original_column = list(df.columns)
df = pd.get_dummies(df, columns = cat_cols, dummy_na = True)
new_column = [c for c in df.columns if c not in original_column ]

\3. Target encoding (or likelihood encoding, impact encoding, mean encoding)

Target encoding 採用 target mean value (among each category) 來給categorical feature做編碼。爲了減少target variable leak,主流的方法是使用2 levels of cross-validation求出target mean,思路如下:

  • 把train data劃分爲20-folds (舉例:infold: fold #2-20, out of fold: fold #1)

    • 將每一個 infold (fold #2-20) 再次劃分爲10-folds (舉例:inner_infold: fold #2-10, Inner_oof: fold #1)

      • 計算 10-folds的 inner out of folds值 (舉例:使用inner_infold #2-10 的target的均值,來作爲inner_oof #1的預測值)
      • 對10個inner out of folds 值取平均,得到 inner_oof_mean
    • 計算oof_mean (舉例:使用 infold #2-20的inner_oof_mean 來預測 out of fold #1的oof_mean

  • 將train data 的 oof_mean 映射到test data完成編碼

參考: Likelihood encoding of categorical features

open source package category_encoders: scikit-learn-contrib/categorical-encoding

代碼:

# train -> training dataframe
# test -> test dataframe

n_folds = 20
n_inner_folds = 10
likelihood_encoded = pd.Series()
likelihood_coding_map = {}

oof_default_mean = train[target].mean()      # global prior mean
kf = KFold(n_splits=n_folds, shuffle=True)
oof_mean_cv = pd.DataFrame()
split = 0

for infold, oof in kf.split(train[feature]):
    print ('==============level 1 encoding..., fold %s ============' % split)
    inner_kf = KFold(n_splits=n_inner_folds, shuffle=True)
    inner_oof_default_mean = train.iloc[infold][target].mean()
    inner_split = 0
    inner_oof_mean_cv = pd.DataFrame()

    likelihood_encoded_cv = pd.Series()
    for inner_infold, inner_oof in inner_kf.split(train.iloc[infold]):
        print ('==============level 2 encoding..., inner fold %s ============' % inner_split)
        # inner out of fold mean
        oof_mean = train.iloc[inner_infold].groupby(by=feature)[target].mean()
        # assign oof_mean to the infold
        likelihood_encoded_cv = likelihood_encoded_cv.append(train.iloc[infold].apply(
            lambda x : oof_mean[x[feature]]
            if x[feature] in oof_mean.index
            else inner_oof_default_mean, axis = 1))
        inner_oof_mean_cv = inner_oof_mean_cv.join(pd.DataFrame(oof_mean), rsuffix=inner_split, how='outer')
        inner_oof_mean_cv.fillna(inner_oof_default_mean, inplace=True)
        inner_split += 1
    
    oof_mean_cv = oof_mean_cv.join(pd.DataFrame(inner_oof_mean_cv), rsuffix=split, how='outer')
    oof_mean_cv.fillna(value=oof_default_mean, inplace=True)
    split += 1
    print ('============final mapping...===========')
    likelihood_encoded = likelihood_encoded.append(train.iloc[oof].apply(
        lambda x: np.mean(inner_oof_mean_cv.loc[x[feature]].values)
        if x[feature] in inner_oof_mean_cv.index
        else oof_default_mean, axis=1))

######################################### map into test dataframe
train[feature] = likelihood_encoded
likelihood_coding_mapping = oof_mean_cv.mean(axis = 1)
default_coding = oof_default_mean

likelihood_coding_map[feature] = (likelihood_coding_mapping, default_coding)
mapping, default_mean = likelihood_coding_map[feature]
test[feature] = test.apply(lambda x : mapping[x[feature]]
                                       if x[feature] in mapping
                                       else default_mean,axis = 1)

\4. beta target encoding

我第一次看到這個方法是在kaggle競賽Avito Demand Prediction Challenge 第14名的solution分享: 14th Place Solution: The Almost Golden Defenders

和target encoding 一樣,beta target encoding 也採用 target mean value (among each category) 來給categorical feature做編碼。不同之處在於,爲了進一步減少target variable leak,beta target encoding發生在在5-fold CV內部,而不是在5-fold CV之前:

  • 把train data劃分爲5-folds (5-fold cross validation)

    • target encoding based on infold data
    • train model
    • get out of fold prediction

同時beta target encoding 加入了smoothing term,用 bayesian mean 來代替mean。Bayesian mean (Bayesian average) 的思路: 某一個category如果數據量較少(<N_min),noise就會比較大,需要補足數據,達到smoothing 的效果。補足數據值 = prior mean。N_min 是一個regularization term,N_min 越大,regularization效果越強。

參考:Beta Target Encoding

代碼:

# train -> training dataframe
# test -> test dataframe
# N_min -> smoothing term, minimum sample size, if sample size is less than N_min, add up to N_min 
# target_col -> target column
# cat_cols -> categorical colums
# Step 1: fill NA in train and test dataframe

# Step 2: 5-fold CV (beta target encoding within each fold)

kf = KFold(n_splits=5, shuffle=True, random_state=0)
for i, (dev_index, val_index) in enumerate(kf.split(train.index.values)):
    # split data into dev set and validation set
    dev = train.loc[dev_index].reset_index(drop=True) 
    val = train.loc[val_index].reset_index(drop=True)
        
    feature_cols = []    
    for var_name in cat_cols:
        feature_name = f'{var_name}_mean'
        feature_cols.append(feature_name)
        
        prior_mean = np.mean(dev[target_col])
        stats = dev[[target_col, var_name]].groupby(var_name).agg(['sum', 'count'])[target_col].reset_index()           
   
        ### beta target encoding by Bayesian average for dev set 
        df_stats = pd.merge(dev[[var_name]], stats, how='left')
        df_stats['sum'].fillna(value = prior_mean, inplace = True)
        df_stats['count'].fillna(value = 1.0, inplace = True)
        N_prior = np.maximum(N_min - df_stats['count'].values, 0)   # prior parameters
        dev[feature_name] = (prior_mean * N_prior + df_stats['sum']) / (N_prior + df_stats['count']) # Bayesian mean

        ### beta target encoding by Bayesian average for val set
        df_stats = pd.merge(val[[var_name]], stats, how='left')
        df_stats['sum'].fillna(value = prior_mean, inplace = True)
        df_stats['count'].fillna(value = 1.0, inplace = True)
        N_prior = np.maximum(N_min - df_stats['count'].values, 0)   # prior parameters
        val[feature_name] = (prior_mean * N_prior + df_stats['sum']) / (N_prior + df_stats['count']) # Bayesian mean
        
        ### beta target encoding by Bayesian average for test set
        df_stats = pd.merge(test[[var_name]], stats, how='left')
        df_stats['sum'].fillna(value = prior_mean, inplace = True)
        df_stats['count'].fillna(value = 1.0, inplace = True)
        N_prior = np.maximum(N_min - df_stats['count'].values, 0)   # prior parameters
        test[feature_name] = (prior_mean * N_prior + df_stats['sum']) / (N_prior + df_stats['count']) # Bayesian mean
        
        # Bayesian mean is equivalent to adding N_prior data points of value prior_mean to the data set.
        del df_stats, stats
    # Step 3: train model (K-fold CV), get oof prediction

另外,對於target encoding和beta target encoding,不一定要用target mean (or bayesian mean),也可以用其他的統計值包括 medium, frqequency, mode, variance, skewness, and kurtosis – 或任何與target有correlation的統計值。

\5. 不做任何處理(模型自動編碼)

參考: https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章