luogu P4449 於神之怒加強版

背景:

又是一道水題。

題目傳送門:

https://www.luogu.org/problem/P4449

題意:

i=1nj=1mgcd(i,j)k\sum_{i=1}^{n}\sum_{j=1}^{m}\gcd(i,j)^k

思路:

i=1nj=1mgcd(i,j)k\sum_{i=1}^{n}\sum_{j=1}^{m}\gcd(i,j)^k

=d=1min(n,m)i=1nj=1mdk[gcd(i,j)=d]=\sum_{d=1}^{\min(n,m)}\sum_{i=1}^{n}\sum_{j=1}^{m}d^k[\gcd(i,j)=d]

=d=1min(n,m)i=1ndj=1mddk[gcd(i,j)=1]=\sum_{d=1}^{\min(n,m)}\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{d}\rfloor}d^k[\gcd(i,j)=1]

=d=1min(n,m)i=1ndj=1mddktgcd(i,j)μ(t)=\sum_{d=1}^{\min(n,m)}\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{d}\rfloor}d^k\sum_{t|\gcd(i,j)}\mu(t)

=d=1min(n,m)i=1ndj=1mddkt=1min(ndmd)μ(t)[tgcd(i,j)]=\sum_{d=1}^{\min(n,m)}\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{d}\rfloor}d^k\sum_{t=1}^{\min(\lfloor \frac{n}{d}\rfloor\lfloor \frac{m}{d}\rfloor)}\mu(t)[t|\gcd(i,j)]

=d=1min(n,m)t=1min(ndmd)μ(t)i=1ndj=1mddk[tgcd(i,j)]=\sum_{d=1}^{\min(n,m)}\sum_{t=1}^{\min(\lfloor \frac{n}{d}\rfloor\lfloor \frac{m}{d}\rfloor)}\mu(t)\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{d}\rfloor}d^k[t|\gcd(i,j)]

=d=1min(n,m)t=1min(ndmd)μ(t)i=1ndtj=1mdtdk=\sum_{d=1}^{\min(n,m)}\sum_{t=1}^{\min(\lfloor \frac{n}{d}\rfloor\lfloor \frac{m}{d}\rfloor)}\mu(t)\sum_{i=1}^{\lfloor \frac{n}{dt}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{dt}\rfloor}d^k

T=dtT=dt,則有:

=T=1min(n,m)tTμ(t)i=1nTj=1mT(Tt)k=\sum_{T=1}^{\min(n,m)}\sum_{t|T}\mu(t)\sum_{i=1}^{\lfloor \frac{n}{T}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{T}\rfloor}(\frac{T}{t})^k

=T=1min(n,m)tTμ(t)nTmT(Tt)k=\sum_{T=1}^{\min(n,m)}\sum_{t|T}\mu(t)\lfloor \frac{n}{T}\rfloor\lfloor \frac{m}{T}\rfloor (\frac{T}{t})^k

=T=1min(n,m)nTmTtTμ(t)(Tt)k=\sum_{T=1}^{\min(n,m)}\lfloor \frac{n}{T}\rfloor\lfloor \frac{m}{T}\rfloor \sum_{t|T}\mu(t)(\frac{T}{t})^k

類似埃氏篩預處理後面的\sum裏的,直接整除分塊即可。
卡常,你可以線性篩kk的次方,判斷μ\mu的值來判斷是否進入第二重循環,具體看代碼。
我不會告訴你正解是線性篩預處理後面的\sum

代碼:

#pragma GCC optimize("Ofast")
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mod 1000000007
#define LL long long
#define R register
#define I inline
using namespace std;
	int n,k;
	int prime[5000010],mu[5000010],f[5000010],sum_f[5000010],Pow[5000010];
	bool bz[5000010];
I int ksm(int x,int k)
{
	int tot=1;
	for(;k;k>>=1)
	{
		if(k&1) tot=(LL)tot*x%mod;
		x=(LL)x*x%mod;
	}
	return tot;
}
I void init(int ma)
{
	int t=0;
	mu[1]=1;
	bz[0]=bz[1]=true;
	Pow[0]=1,Pow[1]=1;
	for(R int i=2;i<=ma;i++)
	{
		if(!bz[i]) prime[++t]=i,mu[i]=-1,Pow[i]=ksm(i,k);
		for(R int j=1;j<=t&&i*prime[j]<=ma;j++)
		{
			bz[i*prime[j]]=true;
			Pow[i*prime[j]]=(LL)Pow[i]*Pow[prime[j]]%mod;
			if(!(i%prime[j]))
			{
				mu[i*prime[j]]=0;
				break;
			}
			mu[i*prime[j]]=-mu[i];
		}
	}
	for(R int i=1;i<=ma;i++)
	{
		if(!mu[i]) continue;
		for(R int j=i;j<=ma;j+=i)
			f[j]=((LL)f[j]+mu[i]*Pow[j/i]+mod)%mod;
	}
	for(R int i=1;i<=ma;i++)
		sum_f[i]=(sum_f[i-1]+f[i])%mod;
}
I int work(int n,int m)
{
	int sum=0;
	for(R int l=1,r;l<=min(n,m);l=r+1)
	{
		r=min(n/(n/l),m/(m/l));
		sum=((LL)sum+((LL)n/l)*((LL)m/l)%mod*((sum_f[r]-sum_f[l-1]+mod)%mod)%mod)%mod;
	}
	return sum;
}
int main()
{
	int T;
	int n,m;
	scanf("%d %d",&T,&k);
	init(5000000);
	while(T--)
	{
		scanf("%d %d",&n,&m);
		printf("%d\n",work(n,m));
	}
}
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章