poj 1830 高斯消元模版题

开关问题
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 6067 Accepted: 2309
Description

有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开。你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态。对于任意一个开关,最多只能进行一次开关操作。你的任务是,计算有多少种可以达到指定状态的方法。(不计开关操作的顺序)
Input

输入第一行有一个数K,表示以下有K组测试数据。
每组测试数据的格式如下:
第一行 一个数N(0 < N < 29)
第二行 N个0或者1的数,表示开始时N个开关状态。
第三行 N个0或者1的数,表示操作结束后N个开关的状态。
接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化。每组数据以 0 0 结束。
Output

如果有可行方法,输出总数,否则输出“Oh,it’s impossible~!!” 不包括引号
Sample Input

2
3
0 0 0
1 1 1
1 2
1 3
2 1
2 3
3 1
3 2
0 0
3
0 0 0
1 0 1
1 2
2 1
0 0
Sample Output

4
Oh,it’s impossible~!!
Hint

第一组数据的说明:
一共以下四种方法:
操作开关1
操作开关2
操作开关3
操作开关1、2、3 (不记顺序)
Source

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <cmath>
using namespace std;
const int maxn = 105;
int equ, var; // 有equ个方程,var个变元。增广阵行数为equ, 分别为0到equ - 1,列数为var + 1,分别为0到var.
int a[maxn][maxn];
int x[maxn]; // 解集.
bool free_x[maxn]; // 判断是否是不确定的变元.
int free_num;

void Debug(void)
{
    int i, j;
    for (i = 0; i < equ; i++)
    {
        for (j = 0; j < var + 1; j++)
        {
            cout << a[i][j] << " ";
        }
        cout << endl;
    }
    cout << endl;
}
inline int gcd(int a, int b)
{
    int t;
    while (b != 0)
    {
        t = b;
        b = a % b;
        a = t;
    }
    return a;
}
inline int lcm(int a, int b)
{
    return a * b / gcd(a, b);
}
// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
int Gauss(void)
{
    int i, j, k;
    int max_r; // 当前这列绝对值最大的行.
int col; // 当前处理的列.
    int ta, tb;
    int LCM;
    int temp;
    int free_x_num;
    int free_index;
    // 转换为阶梯阵.
    col = 0; // 当前处理的列.
    for (k = 0; k < equ && col < var; k++, col++)
    { // 枚举当前处理的行.
        // 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
        max_r = k;
        for (i = k + 1; i < equ; i++)
        {
            if (abs(a[i][col]) > abs(a[max_r][col])) max_r = i;
        }
        if (max_r != k)
        { // 与第k行交换.
            for (j = k; j < var + 1; j++) swap(a[k][j], a[max_r][j]);
        }
        if (a[k][col] == 0)
        { // 说明该col列第k行以下全是0了,则处理当前行的下一列.
            k--; continue;
        }
        for (i = k + 1; i < equ; i++)
        { // 枚举要删去的行.
            if (a[i][col] != 0)
    {
                LCM = lcm(abs(a[i][col]), abs(a[k][col]));
                ta = LCM / abs(a[i][col]), tb = LCM / abs(a[k][col]);
                if (a[i][col] * a[k][col] < 0) tb = -tb; // 异号的情况是两个数相加.
                for (j = col; j < var + 1; j++)
                {
                    a[i][j] = a[i][j] * ta - a[k][j] * tb;
                }
    }
        }
    }
    //Debug();
    // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
    for (i = k; i < equ; i++)
    { // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
        if (a[i][col] != 0) return -1;
    }
    // 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
    // 且出现的行数即为自由变元的个数.
    if (k < var)
    {
        // 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
        for (i = k - 1; i >= 0; i--)
        {
            // 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行.
            // 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.
            free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
            for (j = 0; j < var; j++)
            {
                if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;
            }
            if (free_x_num > 1) continue; // 无法求解出确定的变元.
            // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
            temp = a[i][var];
            for (j = 0; j < var; j++)
            {
                if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j];
            }
            x[free_index] = temp / a[i][free_index]; // 求出该变元.
            free_x[free_index] = 0; // 该变元是确定的.
        }
        return var - k; // 自由变元有var - k个.
    }
    // 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
    // 计算出Xn-1, Xn-2 ... X0.
    for (i = var - 1; i >= 0; i--)
    {
        temp = a[i][var];
        for (j = i + 1; j < var; j++)
        {
            if (a[i][j] != 0) temp -= a[i][j] * x[j];
        }
        if (temp % a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解.
        x[i] = temp / a[i][i];
    }
return 0;
}

int main()
{
    //freopen("Input.txt", "r", stdin);
    int T;
    int s[101],e[101];
    cin>>T;
    while (T--)
    {
        int n,b,c;
        scanf("%d",&n);
        equ=n,var=n;
        for(int i=0;i<n;i++)scanf("%d",&s[i]);
        for(int i=0;i<n;i++)scanf("%d",&e[i]);


        memset(a, 0, sizeof(a));
        memset(x, 0, sizeof(x));
        memset(free_x, 1, sizeof(free_x)); // 一开始全是不确定的变元.

        for(int i=0;i<n;i++)
        {
           a[i][i]=1;
           a[i][n]=s[i]^e[i];
        }

        while(cin>>b>>c && (b||c)) a[c-1][b-1]=1;

        free_num = Gauss();
        if(free_num==-1)
           printf("Oh,it's impossible~!!\n");
        else
           printf("%d\n",1<<(free_num));
    }
    return 0;
}
发布了244 篇原创文章 · 获赞 17 · 访问量 17万+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章