半小时学Rust

半小时学Rust

文章翻译自英文博客,内容有删减。在此感谢原作者分享的精神!
原文地址:A half-hour to learn Rust
原文作者:amos loves to tinker

说明:文章将根据个人理解深度,将不定期修改编辑,也欢迎同学提出宝贵建议!

有时为了加强编程语言的熟练程度,我们需要阅读很多相关文档。但如果不知道什么意思你如何去阅读呢?
在本文中,我将介绍尽可能多的Rust Snippets,而不去过多关注某几个概念,而且会解释他们所包含关键字和符号的意义。

准备好了吗?那开始吧!

变量绑定

let介绍了一种变量绑定的方式:

let x; // declare "x"
x = 42; // assign 42 to "x"

同样可以将生命变量和指定值写成一行:

let x = 42;

你也可以用类型注解符:显示地指定变量类型

let x: i32; // `i32` is a signed 32-bit integer
x = 42;

// there's i8, i16, i32, i64, i128
//    also u8, u16, u32, u64, u128 for unsigned

当然,也可以写成一行:

let x: i32 = 42;

如果你声明了一个变量,但并没有马上对其进行初始化,那么编译器将会阻止你在对其进行初始化前使用它:

let x;
foobar(x); // error: borrow of possibly-uninitialized variable: `x`
x = 42;

然而,这样做却是完全可以的:

let x;
x = 42;
foobar(x); // the type of `x` will be inferred from here

下划线是一个特殊的变量名称,或者缺少名称,基本意味着扔掉一些内容:

// this does *nothing* because 42 is a constant
let _ = 42;

// this calls `get_thing` but throws away its result
let _ = get_thing();

以下划线开始的变量名称是regular名称,编译器在该名称未使用时不会给出警告信息:

// we may use `_x` eventually, but our code is a work-in-progress
// and we just wanted to get rid of a compiler warning for now.
let _x = 42;

允许分别绑定同一名称的变量,这样会隐藏一个变量绑定:

let x = 13;
let x = x + 3;
// using `x` after that line only refers to the second `x`,
// the first `x` no longer exists.

Rust拥有元组类型,可把它看成固定长度的不同类型值的集合

let pair = ('a', 17);
pair.0; // this is 'a'
pair.1; // this is 17

假如我们特别想注解pair的类型,我们可以这么写:

let pair: (char, i32) = ('a', 17);

元组可以在赋值时被解构,即元组中的元素被分解到各自独立的域中:

let (some_char, some_int) = ('a', 17);
// now, `some_char` is 'a', and `some_int` is 17

这在一个函数返回一个元组时相当有用:

let (left, right) = slice.split_at(middle);

当然,当解构一个元组时, 下划线_可以用来充当不需要显示的值:

let (_, right) = slice.split_at(middle);

语句与表达式

分号标志着语句的结束:

let x = 3;
let y = 5;
let z = y + x;

也就是说一个语句可以衍生(span)多行:

let x = vec![1,2,3,4,5,6,7,8]
    .iter()
    .map(|x| x + 3)
    .fold(0, |x, y| x + y);

(待会解释该代码段什么意思!)

函数

fn 声明一个函数。
(1) 无返回值的函数:

fn greet() {
    println!("Hi, there!");
}

(2) 返回一个i32整数值的函数,箭头->表示其返回值类型:

fn fair_dice_roll() -> i32 {
    4
}

一对大括号代表一个代码块, 拥有自己的域:

// This prints "in", then "out"
fn main() {
    let x = "out";
    {
        // this is a different `x`
        let x = "in";
        println!(x);
    }
    println!(x);
}

代码块也是表达式,也就是说代码块计算出的值给一个值

// this:
let x = 42;

// is equivalent to this:
let x = { 42 };

在一个代码块中,一般会有多个语句:

let x = {
    let y = 1; // first statement
    let z = 2; // second statement
    y + z // this is the *tail* - what the whole block will evaluate to
};

也就是说为什么省略函数最后的大括号跟返回值具有一样的效果,即等价关系如下:

fn fair_dice_roll() -> i32 {
    return 4;
}

fn fair_dice_roll() -> i32 {
    4
}

if条件表达式:

fn fair_dice_roll() -> i32 {
    if feeling_lucky {
        6
    } else {
        4
    }
}

match表达式:

fn fair_dice_roll() -> i32 {
    match feeling_lucky {
        true => 6,
        false => 4,
    }
}

.常被用于访问值的域:

let a = (10, 20);
a.0; // this is 10

let amos = get_some_struct();
amos.nickname; // this is "fasterthanlime"

或者,在一个值上调用方法:

let nick = "fasterthanlime";
nick.len(); // this is 14

双冒::类似于作用在命名空间上,在该例子中,std是一个crate (库),cmp是一个模块(代码文件),min是一个函数:

let least = std::cmp::min(34, 90); // this is 34

use指令可用于将其他名称空间中的名称“引入范围”:

use std::cmp::min;

let least = min(7, 1); // this is 1

在use指令中,花括号的另一含义是:“globs”。假如我们要同时引用minmax,我们可以做如下操作:

// this works:
use std::cmp::min;
use std::cmp::max;

// this also works:
use std::cmp::{min, max};

// this also works!
use std::{cmp::min, cmp::max};

通配符*允许你从一个命名空间中引入每个symbol:

// this brings `min` and `max` in scope, and many other things
use std::cmp::*;

类型也是命名空间,方法可以像常规函数一样被调用:

let x = "amos".len(); // this is 4
let x = str::len("amos"); // this is also 4

str是一个原始类型,但是很多非原始类型也在默认的范围内。

// `Vec` is a regular struct, not a primitive type
let v = Vec::new();

// this is exactly the same code, but with the *full* path to `Vec`
let v = std::vec::Vec::new();

如下引用也是起作用的,因为Rust将在每个模块的开始插入如下引用:

use std::prelude::v1::*;

(反过来又重新导出了很多符号,例如Vec,String,Option和Result)

关键字struct用于结构体声明:

struct Vec2 {
    x: f64, // 64-bit floating point, aka "double precision"
    y: f64,
}

可以使用结构文字初始化它们:

let v1 = Vec2 { x: 1.0, y: 3.0 };
let v2 = Vec2 { y: 2.0, x: 4.0 };
// the order does not matter, only the names do

可以使用缩略形式初始化剩余的来自于其他结构体的域:

let v3 = Vec2 {
    x: 14.0,
    ..v2
};

这种形式被称作“结构体更新语法”,只能发生在结构体的最后一个位置,且不能跟逗号.
请注意,其余字段可以表示所有字段:

let v4 = Vec2 { ..v3 };

结构体,像元组,是可以被解构的。像let模式的例子是有效的:

let (left, right) = slice.split_at(middle);

这样的形式也可以:

let v = Vec2 { x: 3.0, y: 6.0 };
let Vec2 { x, y} = v;
//`x` is now 3.0, `y` is now `6.0`

还有这个:

let Vec2 { x, .. } = v;
// this throws away `v.y`

let模式可以被用于if的条件:

struct Number {
    odd: bool,
    value: i32,
}

fn main() {
    let one = Number { odd: true, value: 1 };
    let two = Number { odd: false, value: 2 };
    print_number(one);
    print_number(two);
}

fn print_number(n: Number) {
    if let Number { odd: true, value } = n {
        println!("Odd number: {}", value);
    } else if let Number { odd: false, value } = n {
        println!("Even number: {}", value);
    }
}

// this prints:
// Odd number: 1
// Even number: 2

match操作同样也是模式,像if let:

fn print_number(n: Number) {
    match n {
        Number { odd: true, value } => println!("Odd number: {}", value),
        Number { odd: false, value } => println!("Even number: {}", value),
    }
}

// this prints the same as before

match必须是详尽的:至少有一个能匹配的分支。

fn print_number(n: Number) {
    match n {
        Number { value: 1, .. } => println!("One"),
        Number { value: 2, .. } => println!("Two"),
        Number { value, .. } => println!("{}", value),
        // if that last arm didn't exist, we would get a compile-time error
    }
}

若列出所有匹配分支是比较困难的,那么下划线_可以用作“catch-all”模式:

fn print_number(n: Number) {
    match n.value {
        1 => println!("One"),
        2 => println!("Two"),
        _ => println!("{}", n.value),
    }
}

你也可以声明方法在自定义类型上:

struct Number {
    odd: bool,
    value: i32,
}

impl Number {
    fn is_strictly_positive(self) -> bool {
        self.value > 0
    }
}

并且可以像通常的做法使用它们:

fn main() {
    let minus_two = Number {
        odd: false,
        value: -2,
    };
    println!("positive? {}", minus_two.is_strictly_positive());
    // this prints "positive? false"
}

变量绑定默认是不可变的:

fn main() {
    let n = Number {
        odd: true,
        value: 17,
    };
    n.odd = false; // error: cannot assign to `n.odd`,
                   // as `n` is not declared to be mutable
}

不可变变量绑定不能对其内部进行更改(就像我们刚才尝试的那样),但是也不能将其分配

fn main() {
    let n = Number {
        odd: true,
        value: 17,
    };
    n = Number {
        odd: false,
        value: 22,
    }; // error: cannot assign twice to immutable variable `n`
}

mut关键字使得变量为可变绑定:

fn main() {
    let mut n = Number {
        odd: true,
        value: 17,
    }
    n.value = 19; // all good
}

Traits

Trait 是多种类型共同拥有的一种性质:

trait Signed {
    fn is_strictly_negative(self) -> bool;
}

你可以实现为:
(1)如果要实现外部定义的 trait 需要先将其导入作用域。
(2)不允许对外部类型实现外部 trait;
(3)可以对外部类型实现自定义的 trait;
(4)可以对自定义类型上实现外部 trait。
这些规则称为“孤儿规则”。
(1) 为自定义类型实现Trait的例子:

impl Signed for Number {
    fn is_strictly_negative(self) -> bool {
        self.value < 0
    }
}

fn main() {
    let n = Number { odd: false, value: -44 };
    println!("{}", n.is_strictly_negative()); // prints "true"
}

(2) 为外部类型(原始类型,比如i32等)实现自定义Trait:

impl Signed for i32 {
    fn is_strictly_negative(self) -> bool {
        self < 0
    }
}

fn main() {
    let n: i32 = -44;
    println!("{}", n.is_strictly_negative()); // prints "true"
}

(3)为自定义类型实现外部Trait:

// the `Neg` trait is used to overload `-`, the
// unary minus operator.
impl std::ops::Neg for Number {
    type Output = Number;

    fn neg(self) -> Number {
        Number {
            value: -self.value,
            odd: self.odd,
        }        
    }
}

fn main() {
    let n = Number { odd: true, value: 987 };
    let m = -n; // this is only possible because we implemented `Neg`
    println!("{}", m.value); // prints "-987"
}

一个impl 块总是对应着一个类型,因此在该块中,Self对应这个类型:

impl std::ops::Neg for Number {
    type Output = Self;

    fn neg(self) -> Self {
        Self {
            value: -self.value,
            odd: self.odd,
        }        
    }
}

一些Trait是标签-它们不是说某一类型实现某些方法,而是说某些事情可以借助于某一类型来完成。比如说,i32实现了CopyTrait.(简言之,i32Copy),因此以下例子是可以正常工作的。

fn main() {
    let a: i32 = 15;
    let b = a; // `a` is copied
    let c = a; // `a` is copied again
}

也可以这样:

fn print_i32(x: i32) {
    println!("x = {}", x);
}

fn main() {
    let a: i32 = 15;
    print_i32(a); // `a` is copied
    print_i32(a); // `a` is copied again
}

但是Number结构体是不能如此操作的,因为其并没有实现Copy Trait,所以这样做会有问题:

fn main() {
    let n = Number { odd: true, value: 51 };
    let m = n; // `n` is moved into `m`
    let o = n; // error: use of moved value: `n`
}

也不能这样做:

fn print_number(n: Number) {
    println!("{} number {}", if n.odd { "odd" } else { "even" }, n.value);
}

fn main() {
    let n = Number { odd: true, value: 51 };
    print_number(n); // `n` is moved
    print_number(n); // error: use of moved value: `n`
}

但是,如果将print_number的参数换成不可变引用形式,那么函数将可以正常工作:

fn print_number(n: &Number) {
    println!("{} number {}", if n.odd { "odd" } else { "even" }, n.value);
}

fn main() {
    let n = Number { odd: true, value: 51 };
    print_number(&n); // `n` is borrowed for the time of the call
    print_number(&n); // `n` is borrowed again
}

如果将函数参数换成可变引用也是能工作的,但只要变量绑定是mut.

fn invert(n: &mut Number) {
    n.value = -n.value;
}

fn print_number(n: &Number) {
    println!("{} number {}", if n.odd { "odd" } else { "even" }, n.value);
}

fn main() {
    // this time, `n` is mutable
    let mut n = Number { odd: true, value: 51 };
    print_number(&n);
    invert(&mut n); // `n is borrowed mutably - everything is explicit
    print_number(&n);
}

Trait方法也可以引用或者可变引用作为自身:

impl std::clone::Clone for Number {
    fn clone(&self) -> Self {
        Self { ..self }
    }
}

当调用Trait方法时,隐式借用了接收者:

fn main() {
    let n = Number { odd: true, value: 51 };
    let mut m = n.clone();
    m.value += 100;
    
    print_number(&n);
    print_number(&m);
}

特别强调下:这些是等价的:


let m = n.clone();
let m = std::clone::Clone::clone(&n);

标签Trait像Copy没有方法:

// note: `Copy` requires that `Clone` is implemented too
impl std::clone::Clone for Number {
    fn clone(&self) -> Self {
        Self { ..*self }
    }
}

impl std::marker::Copy for Number {}

现在,Clone仍然可以使用:

fn main() {
    let n = Number { odd: true, value: 51 };
    let m = n.clone();
    let o = n.clone();
}

Number值将永远不被移动:

fn main() {
    let n = Number { odd: true, value: 51 };
    let m = n; //`m` is a copy of `n`
    let o = n; // same. `n` is neither moved nor borrowed.
}

有些Trait可以通过derive属性自动实现标签Trait:

#[derive(Clone, Copy)]
struct Number {
    odd: bool,
    value: i32,
}

// this expands to `impl Clone for Number` and `impl Copy for Number` blocks.

函数泛型:

fn foobar<T>(arg: T) {
    // do something with `arg`
}

函数可以有多个类型参数,并可以在函数声明和函数提中使用,而不是具体类型:

fn foobar<L, R>(left: L, right: R) {
    // do something with `left` and `right`.
}

类型参数通常具有约束,因此您实际上可以对它们做一些事情。最简单的限制就是Trait名称:

fn print<T: Display>(value: T) {
    println!("value = {}", value);
}

fn print<T: Debug>(value: T) {
    println!("value = {:?}", value);
}

类型参数约束的语法更长:

fn print<T>(value: T)
where
    T: Display {
        println!("value = {}");
}

约束可能更复杂:它们可能需要一个类型参数来实现多个Traits:

use std::fmt::Debug;
fn compare<T>(left: T, right: T)
where
    T: Debug + PartialEq,
{
    println!("{:?} {} {:?}", left, if left == right {"=="})
}

fn main() {
    compare("tea", "coffee");
    // prints: "tea" != "coffee"
}

泛型函数可以被认为是名称空间,其中包含无限个具有不同具体类型的函数。
和使用crate, module,type和泛型函数一样,可以使用::来“导航”;

fn main() {
    use std::any::type_name;
    println!("{}", type_name::<i32>()); // prints "i32"
    println!("{}", type_name::<(f64, char)>()); // prints "(f64, char)"
}

这被称为涡轮鱼语法,因为::<>看起来像一条鱼。结构体也可以是泛型的:

struct Pair<T> {
    a: T,
    b: T,
}

fn print_type_name<T>(_val: &T) {
    println!("{}", std::any::type_name::<T>());
}

fn main() {
    let p1 = Pair{ a: 3, b: 9 };
    let p2 = Pair { a: true, b: false };
    print_type_name(&p1); // prints "Pair<i32>"
    print_type_name(&p2); // prints "Pair<bool>"
}

标准库类型Vec(堆分配的数组),是泛型的:

fn main() {
    let mut v1 = Vec::new();
    v1.push(1);
    let mut v2 = Vec::new();
    v2.push(false);
    print_type_name(&v1); // prints "Vec<i32>"
    print_type_name(&v2); // prints "Vec<bool>"
}

说起Vec, 一般由vec!宏来定义:

fn main() {
    let v1 = vec![1, 2, 3];
    let v2 = vec![true, false, true];
    print_type_name(&v1); // prints "Vec<i32>"
    print_type_name(&v2); // prints "Vec<bool>"
}

所有类似于name!(),name![]或name!{}调用的是一个宏。宏展开成一般的代码。
事实上,println!是一个宏:

fn main() {
    println!("{}", "Hello there!");
}

这段代码展开成普通代码具有相同效果:

fn main() {
    use std::io::{self, Write};
    io::stdout().lock().write_all(b"Hello there!\n").unwrap();
}

panic!也是一个宏,如果启用,它将猛烈停止执行并显示错误消息和错误的文件名/行号:

fn main() {
    panic!("This panics");
}
// output: thread 'main' panicked at 'This panics', src/main.rs:3:5

一些方法也是Panic,比如Option类型能为Some(x),也可能为None。如果Option调用.unwrap(),如果为None,那么将会Panic。

fn main() {
    let o1: Option<i32> = Some(128);
    o1.unwrap(); //this is fine

    let o2: Option<i32> = None;
    o2.unwrap(); // this is panics!
}
// output: thread 'main' panicked at 'called `Option::unwrap()` on a `None` value', src/libcore/option.rs:378:21

Option不是一个结构体,而是一个枚举类型,且只有两个变量;

enum Option<T> {
    None,
    Some(T),
}

impl<T> Option<T> {
    fn unwrap(self) -> T {
        match self {
            Self::Some(t) => t,
            Self::None => panic!(".unwrap() called on a None option")
        }
    }
}

use self::Option::{None, Some};

fn main() {
    let o1: Option<i32> = Some(128);
    o1.unwrap(); // this is fine

    let o2: Option<i32> = None;
    o2.unwrap(); // this panics!
}

// output: thread 'main' panicked at 'called `Option::unwrap()` on a `None` value', src/libcore/option.rs:378:21

Result也是一个枚举类型:

enum Result<T, E> {
    Ok(T),
    Err(E),
}

它也会在Result值是Err(E)时发生panic。

Lifetime

变量绑定有一个生命周期“lieftime”:

fn main() {
    // `x` doesn't exist yet
    {
        let x = 42; // `x` starts existing
        println!("x = {}", x);
        // `x` stops existing
    }
    // `x` no longer exists
}

类似地,引用有生命周期:

fn main() {
    // `x` doesn't exist yet
    {
        let x = 42; // `x` starts existing
        let x_ref = &x; // `x_ref` starts existing - it borrows `x`
        println!("x_ref = {}", x_ref);
        // `x_ref` stops existing
        // `x` stops existing
    }
    // `x` no longer exists
}

引用的生命周期长度不能超过它所借用的变量绑定的生命周期:

fn main() {
    let x_ref = {
        let x = 42;
        &x
    };
    println!("x_ref = {}", x_ref);
    // error: `x` does not live long enough
}

不可变变量绑定可被借用多次:

fn main() {
    let x = 42;
    let x_ref1 = &x;
    let x_ref2 = &x;
    let x_ref3 = &x;
    println!("{} {} {}", x_ref1, x_ref2, x_ref3);
}

当一个变量被借用,那么变量绑定将不可变:

fn main() {
    let mut x = 42;
    let x_ref = &x;
    x = 13;
    println!("x_ref = {}", x_ref);
    // error: cannot assign to `x` because it is borrowed
}

当一个变量被不可变借用时,那么该变量不允许可变借用:

fn main() {
    let mut x = 42;
    let x_ref1 = &x;
    let x_ref2 = &mut x;
    // error: cannot borrow `x` as mutable because it is also borrowed as immutable
    println!("x_ref1 = {}", x_ref1);
}

函数的引用参数也有生命周期:

fn print(x:&i32) {
    // `x` is borrowed (from the outside) for the
    // entire time this function is called.   
}

具有引用参数的函数可以使用具有不同生命周期的借用来调用:
(1)All functions that take references are generic
(2)生命周期是泛型参数;
生命周期的名称起始字符带有单引号'

// elided (non-named) lifetimes:
fn print(x: &i32) {}

// named lifetimes:
fn print<'a>(x: &'a i32) {}

返回引用的生命周期要依赖于某一个函数参数的生命周期:

// elided (non-named) lifetimes:
fn print(x: &i32) {}

// named lifetimes:
fn print<'a>(x: &'a i32) {}

当函数只有一个输入生命周期(带有生命周期限制的函数参数),没有必要去标注生命周期,所有项都具有相同的生命周期,因此以下两个函数是等价的:

fn number_value<'a>(num: &'a Number) -> &'a i32 {
    &num.value
}

fn number_value(num: &Number) -> &i32 {
    &num.value
}

结构体在生命周期中也可以是泛型的,这使得结构体持有引用:

struct NumRef<'a> {
    x: &'a i32,
}

fn main() {
    let x:i32 = 99;
    let x_ref = NumRef {x: &x};
    // `x_ref` cannot outlive `x`, etc.
}

同样的代码,但是增加了一个函数:

struct NumRef<'a> {
    x: &'a i32,
}

fn as_num_ref(x: &'a i32) -> NumRef<'a> {
    NumRef {x: &x}
}

fn main() {
    let x: i32 = 99;
    let x_ref = as_num_ref(&x);
    // `x_ref` cannot outlive `x`, etc.
}

同样代码,但省略了生命周期:

struct NumRef<'a> {
    x: &'a i32,
}

fn as_num_ref(x: &'a i32) -> NumRef<'_> {
    NumRef {x: &x}
}

fn main() {
    let x: i32 = 99;
    let x_ref = as_num_ref(&x);
    // `x_ref` cannot outlive `x`, etc.
}s_

impl块也可以泛型方式使用生命周期:

impl<'a> NumRef<'a> {
    fn as_i32_ref(&'a self) -> &'a i32 {
        self.x
    }
}

fn main() {
    let x: i32 = 99;
    let x_num_ref = NumRef { x: &x};
    let x_i32_ref = x_num_ref.as_i32_ref();
    // neither ref cannot outlive `x`
}

当然,对于只有一个生命周期参数的情况,也可以省略:

impl<'a> NumRef<'a> {
    fn as_i32_ref(&self) -> &i32 {
        self.x
    }
}

如果没有显示的生命周期符号,那省略的将更加坚决:

impl NumRef<'_> {
    fn as_i32_ref(&self) -> &i32 {
        self.x
    }
}

特殊生命周期 static,其在程序的整个生命周期内都有效,以下为String语法的例子:

struct Person {
    name: &'static str,
}

fn main() {
    let p = Person {
        name: "fasterthanlime",
    };
}

但是已有所主的字符串是不能static的,以下例子中的引用生命周期是不能长于所引用变量的生命周期的:

struct Person {
    name: &'static str,
}

fn main() {
    let name = format!("fasterthan{}", lime);
    let p = Person { name: &name };
    // error: `name` does not live long enough
}

In that last example, the local name is not a &static str, it’s a String. It’s been allocated dynamically, and it will be freed. Its lifetime is less than the whole program (even though it happens to be in main)."

为了在Person结构体中存储一个非‘static字符串,需要:
A)使用生命周期泛型:

struct Person<'a> {
    name: &'a str,
}

fn main() {
    let name = format!("fasterthan{}", "lime");
    let p = Person { name: &name };
    // `p` cannot outlive `name`
}

B) 获取字符串的所有权

struct Person {
    name: String,
}

fn main() {
    let name = format!("fasterthan{}", "lime");
    let p = Person { name: name };
    // `name` was moved into `p`, their lifetimes are no longer tied.
}

说起:在结构体中,当一个域被设置为变量绑定为相同的名称,(即值与域名称相同):

let p = Person { name: name};

可以简写为:

let p = Person { name };

Rust中很多类型有ownednon-owned变量:
(1)Strings:String是owned, &str是引用的;
(2)Paths: PathBuf是owned, &Path是引用的;
(3)Collections: Vec<T>是owned, &[T]是引用的;
Rust有slice(切片),他们是多连续元素的引用。可以通过以下例子中的方式借用动态数组(vector):

fn main() {
    let v = vec![1,2,3,4,5];
    let v2 = &v[2..4];
    println!("v2 = {:?}", v2);
}

//output:
// v2 = [3, 4]

以上列子并非难以理解,查询操作符(foo[index])重载了IndexIndexMutTrait。..语义表示范围,仅仅是一些在标准库中定义的结构体。且索引范围是半开半闭区间内的元素,如果最右端的前面加上=

fn main() {
    // 0 or greater
    println!("{:?}", (0..).contains(&100)); // true
    // strictly less than 20
    println!("{:?}", (..20).contains(&20)); // false
    // 20 or less than 20
    println!("{:?}", (..=20).contains(&20)); // true
    // only 3, 4, 5
    println!("{:?}", (3..6).contains(&4)); // true
}

借用规则同样可应用于slices:

fn tail(s: &[u8]) -> &[u8] {
  &s[1..] 
}

fn main() {
    let x = &[1, 2, 3, 4, 5];
    let y = tail(x);
    println!("y = {:?}", y);
}

相同效果的例子:

fn tail<'a>(s: &'a [u8]) -> &'a [u8] {
    &s[1..]
}

这样是合法的:

fn main() {
    let y = {
        let x = &[1, 2, 3, 4, 5];
        tail(x)
    };
    println!("y = {:?}", y);
}

因为[1,2,3,4,5]是’static数组,因此,这是不合法的:

fn main() {
    let y = {
        let v = vec![1, 2, 3, 4, 5];
        tail(&v)
        // error: `v` does not live long enough
    };
    println!("y = {:?}", y);
}

因为动态数组是基于堆分配的,并没有‘static生命周期。

&str值是切片

fn file_ext(name: &str) -> Option<&str> {
    // this does not create a new string - it returns
    // a slice of the argument.
    name.split(".").last()
}

fn main() {
    let name = "Read me. Or don't.txt";
    if let Some(ext) = file_ext(name) {
        println!("file extension: {}", ext);
    } else {
        println!("no file extension");
    }
}

因此借用规则同样适用于此:

fn main() {
    let ext = {
        let name = String::from("Read me. Or don't.txt");
        file_ext(&name).unwrap_or("")
        // error: `name` does not live long enough
    };
    println!("extension: {:?}", ext);
}

函数执行失败时通常会返回一个Result:

fn main() {
    let s = std::str::from_utf8(&[240, 159, 141, 137]);
    println!("{:?}", s);
    // prints: Ok("🍉")

    let s = std::str::from_utf8(&[195, 40]);
    println!("{:?}", s);
    // prints: Err(Utf8Error { valid_up_to: 0, error_len: Some(1) })
}

在执行失败时,若你想Panic, 那么调用.unwrap():

fn main() {
    let s = std::str::from_utf8(&[240, 159, 141, 137]).unwrap();
    println!("{:?}", s);
    // prints: "🍉"

    let s = std::str::from_utf8(&[195, 40]).unwrap();
    // prints: thread 'main' panicked at 'called `Result::unwrap()`
    // on an `Err` value: Utf8Error { valid_up_to: 0, error_len: Some(1) }',
    // src/libcore/result.rs:1165:5
}

或者想获取自定义的信息,可以调用.expect():

fn main() {
    let s = std::str::from_utf8(&[195, 40]).expect("valid utf-8");
    // prints: thread 'main' panicked at 'valid utf-8: Utf8Error
    // { valid_up_to: 0, error_len: Some(1) }', src/libcore/result.rs:1165:5
}

或者使用match

fn main() {
    match std::str::from_utf8(&[240, 159, 141, 137]) {
        Ok(s) => println!("{}", s),
        Err(e) => panic!(e),
    }
    // prints 🍉
}

或者使用if let:

fn main() {
    if let Ok(s) = std::str::from_utf8(&[240, 159, 141, 137]) {
        println!("{}", s);
    }
    // prints 🍉
}

或者可以抛出错误:

fn main() -> Result<(), std::str::Utf8Error> {
    match std::str::from_utf8(&[240, 159, 141, 137]) {
        Ok(s) => println!("{}", s),
        Err(e) => return Err(e),
    }
    Ok(())
}

或者可以使用操作符?使得代码更加简洁:

fn main() -> Result<(), std::str::Utf8Error> {
    let s = std::str::from_utf8(&[240, 159, 141, 137])?;
    println!("{}", s);
    Ok(())
}

解引用操作符*,但你并不需要使用解引用来访问域或者调用方法:

struct Point {
    x: f64,
    y: f64,
}

fn main() {
    let p = Point { x: 1.0, y: 3.0 };
    let p_ref = &p;
    println!("({}, {})", p_ref.x, p_ref.y);
}

// prints `(1, 3)`

并且当类型是Copy语义时,你可以简单地这样做。
首先看下没有Copy语义时,如下例子:

struct Point {
    x: f64,
    y: f64,
}

fn negate(p: Point) -> Point {
    Point {
        x: -p.x,
        y: -p.y,
    }
}

fn main() {
    let p = Point { x: 1.0, y: 3.0 };
    let p_ref = &p;
    negate(*p_ref);
    // error: cannot move out of `*p_ref` which is behind a shared reference
}

但当有Copy语义时:

// now `Point` is `Copy`
#[derive(Clone, Copy)]
struct Point {
    x: f64,
    y: f64,
}

fn negate(p: Point) -> Point {
    Point {
        x: -p.x,
        y: -p.y,
    }
}

fn main() {
    let p = Point { x: 1.0, y: 3.0 };
    let p_ref = &p;
    negate(*p_ref); // ...and now this works
}

闭包

闭包是具有某些捕获上下文的Fn,FnMut或FnOnce类型的函数。它们的参数是一对管道内(’|’),逗号分隔名称列表。它们不需要花括号,除非要使用多个语句。

fn for_each_planet<F>(f: F)
    where F: Fn(&'static str)
{
    f("Earth");
    f("Mars");
    f("Jupiter");
}
 
fn main() {
    for_each_planet(|planet| println!("Hello, {}", planet)); 
}

// prints:
// Hello, Earth
// Hello, Mars
// Hello, Jupiter

借用规则同样适用于这里:

fn for_each_planet<F>(f: F)
    where F: Fn(&'static str)
{
    f("Earth");
    f("Mars");
    f("Jupiter");
}
 
fn main() {
    let greeting = String::from("Good to see you");
    for_each_planet(|planet| println!("{}, {}", greeting, planet));
    // our closure borrows `greeting`, so it cannot outlive it
}

比如,以下例子就不能正常通过:

fn for_each_planet<F>(f: F)
    where F: Fn(&'static str) + 'static // `F` must now have "'static" lifetime
{
    f("Earth");
    f("Mars");
    f("Jupiter");
}

fn main() {
    let greeting = String::from("Good to see you");
    for_each_planet(|planet| println!("{}, {}", greeting, planet));
    // error: closure may outlive the current function, but it borrows
    // `greeting`, which is owned by the current function
}

但是这样是可以的:

fn main() {
    let greeting = String::from("You're doing great");
    for_each_planet(move |planet| println!("{}, {}", greeting, planet));
    // `greeting` is no longer borrowed, it is *moved* into
    // the closure.
}

一个FnMut需要可变借用才能被调用,因此它在某一时刻只能被调用一次,比如以下例子是合法的:

fn foobar<F>(f: F)
    where F: Fn(i32) -> i32
{
    println!("{}", f(f(2))); 
}
 
fn main() {
    foobar(|x| x * 2);
}

// output: 8

而这个例子是非法的:

fn foobar<F>(mut f: F)
    where F: FnMut(i32) -> i32
{
    println!("{}", f(f(2))); 
    // error: cannot borrow `f` as mutable more than once at a time
}
 
fn main() {
    foobar(|x| x * 2);
}

这样操作又变成合法的了:


fn foobar<F>(mut f: F)
    where F: FnMut(i32) -> i32
{
    let tmp = f(2);
    println!("{}", f(tmp)); 
}
 
fn main() {
    foobar(|x| x * 2);
}

// output: 8

FnMut存在因为一些闭包可变借用局部变量:

fn foobar<F>(mut f: F)
    where F: FnMut(i32) -> i32
{
    let tmp = f(2);
    println!("{}", f(tmp)); 
}
 
fn main() {
    let mut acc = 2;
    foobar(|x| {
        acc += 1;
        x * acc
    });
}

// output: 24

这些闭包不能被传给需要Fn的函数:

fn foobar<F>(f: F)
    where F: Fn(i32) -> i32
{
    println!("{}", f(f(2))); 
}
 
fn main() {
    let mut acc = 2;
    foobar(|x| {
        acc += 1;
        // error: cannot assign to `acc`, as it is a
        // captured variable in a `Fn` closure.
        // the compiler suggests "changing foobar
        // to accept closures that implement `FnMut`"
        x * acc
    });
}

FnOnce闭包只能被调用一次。它们之所以存在,是因为某些闭包将捕获时移出的变量移出:

fn foobar<F>(f: F)
    where F: FnOnce() -> String
{
    println!("{}", f()); 
}
 
fn main() {
    let s = String::from("alright");
    foobar(move || s);
    // `s` was moved into our closure, and our
    // closures moves it to the caller by returning
    // it. Remember that `String` is not `Copy`.
}

这自然是强制执行的,因为需要移动FnOnce闭包才能调用它,因此,以下例子是非法的:

fn foobar<F>(f: F)
    where F: FnOnce() -> String
{
    println!("{}", f()); 
    println!("{}", f()); 
    // error: use of moved value: `f`
}

并且,如果你需要有说服力的证据表明闭包确实会移动s,那么下面这个例子也是非法的:

fn main() {
    let s = String::from("alright");
    foobar(move || s);
    foobar(move || s);
    // use of moved value: `s`
}

但是这样却是可以的:

fn main() {
    let s = String::from("alright");
    foobar(|| s.clone());
    foobar(|| s.clone());
}

这里有一个带有两个参数的闭包:

fn foobar<F>(x: i32, y: i32, is_greater: F)
    where F: Fn(i32, i32) -> bool
{
    let (greater, smaller) = if is_greater(x, y) {
        (x, y)
    } else {
        (y, x)
    };
    println!("{} is greater than {}", greater, smaller);
}
 
fn main() {
    foobar(32, 64, |x, y| x > y);
}

闭包允许忽略参数:

fn main() {
    foobar(32, 64, |_, _| panic!("Comparing is futile!"));
}

稍微令人担心的闭包:

fn countdown<F>(count: usize, tick: F)
    where F: Fn(usize)
{
    for i in (1..=count).rev() {
        tick(i);
    }
}
 
fn main() {
    countdown(3, |i| println!("tick {}...", i));
}

// output:
// tick 3...
// tick 2...
// tick 1...

"马桶式"闭包(之所以这么叫是因为|_| ()看起来像个马桶):

fn main() {
    countdown(3, |_| ());
}

循环

任何可迭代的元素集合均可使用类似于for in循环。我们知道在某一范围内可以使用该形式的循环,其实在Vec中也是可以使用的:

fn main() {
    for i in vec![52, 49, 21] {
        println!("I like the number {}", i);
    }
}

或者是切片(slice)

fn main() {
    for i in &[52, 49, 21] {
        println!("I like the number {}", i);
    }
}

// output:
// I like the number 52
// I like the number 49
// I like the number 21

或者是一个实际的迭代器:

fn main() {
    // note: `&str` also has a `.bytes()` iterator.
    // Rust's `char` type is a "Unicode scalar value"
    for c in "rust".chars() {
        println!("Give me a {}", c);
    }
}

// output:
// Give me a r
// Give me a u
// Give me a s
// Give me a t

即使迭代器项已被过滤,映射或者展开:

fn main() {
    for c in "sHE'S brOKen"
        .chars()
        .filter(|c| c.is_uppercase() || !c.is_ascii_alphabetic())
        .flat_map(|c| c.to_lowercase())
    {
        print!("{}", c);
    }
    println!();
}

// output: he's ok

依旧可以从一个函数返回一个闭包:

fn make_tester(answer: String) -> impl Fn(&str) -> bool {
    move |challenge| {
        challenge == answer
    }
}

fn main() {
    // you can use `.into()` to perform conversions
    // between various types, here `&'static str` and `String`
    let test = make_tester("hunter2".into());
    println!("{}", test("******"));
    println!("{}", test("hunter2"));
}

你甚至能移动函数某一参数的引用到函数返回的闭包中:

fn make_tester<'a>(answer: &'a str) -> impl Fn(&str) -> bool + 'a {
    move |challenge| {
        challenge == answer
    }
}

fn main() {
    let test = make_tester("hunter2");
    println!("{}", test("*******"));
    println!("{}", test("hunter2"));
}

// output:
// false
// true

或者带有省略生命周期的形式:

fn make_tester(answer: &str) -> impl Fn(&str) -> bool + '_ {
    move |challenge| {
        challenge == answer
    }
}

这样一来,我们达到了预计30分钟阅读时间的计划,你应该能够阅读大部分在网上找到的Rust代码。
编写Rust代码跟阅读Rust是两种截然不同的体验,一方面是你并不是阅读一个问题的解决方案,你要去解决该问题,另一方面,Rust编译器可以提供很多帮助。
对于上述所有有意而为之的错误代码(“此代码是非法的”等),rustc始终具有非常好的错误消息和有见地的建议。而且,当缺少提示时,编译器团队不会害怕添加它。
也许你需要查看更多的资料:
The Rust Book
Rust By Example
Read Rust
This Week In Rust

我也写一些Rust相关的博客和发一些Rust相关的twitter,因此如果你比较喜欢这篇文章,你知道该怎么做了!

Have fun!

发布了35 篇原创文章 · 获赞 9 · 访问量 6万+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章