神經網絡-Octave實現

1. 主要的實現forward propagation algorithm前向傳播算法,通過初始的theta得到預測函數和J函數。


2. 然後通過back propagation algorithm後向傳播算法,使用得到的h和J值,可以通過gradient descent計算theta_grade來不斷的收斂到最小的J函數。


主要代碼如下:

function [J grad] = nnCostFunction(nn_params, ...
                                   input_layer_size, ...
                                   hidden_layer_size, ...
                                   num_labels, ...
                                   X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
%   [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
%   X, y, lambda) computes the cost and gradient of the neural network. The
%   parameters for the neural network are "unrolled" into the vector
%   nn_params and need to be converted back into the weight matrices. 
% 
%   The returned parameter grad should be a "unrolled" vector of the
%   partial derivatives of the neural network.
%

% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
                 hidden_layer_size, (input_layer_size + 1));

Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
                 num_labels, (hidden_layer_size + 1));

% Setup some useful variables
m = size(X, 1);
         
% You need to return the following variables correctly 
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));

% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
%               following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
%         variable J. After implementing Part 1, you can verify that your
%         cost function computation is correct by verifying the cost
%         computed in ex4.m
disp(size(y));
%transfer y
tmpy =[y zeros(m,num_labels-1)];
for i=1:num_labels,
   for j=1:m,
        if y(j)==i
            tmpy(j,i)=1;
        else
            tmpy(j,i)=0;
        end;
    end;
end;

%tmpy =[y zeros(m,num_labels-1)];
%tmpy=eye(num_
%compute hx
a1=X;
a1=[ones(m,1) X];

z2=a1*Theta1';
a2=sigmoid(z2);
a2=[ones(size(a2,1),1) a2];

z3=a2*Theta2';
a3=sigmoid(z3);

h=a3;
disp(size(h));

%Step1: compute cost fuction
Jtmp=0;
for i=1:m,
    for k=1:size(tmpy,2),
        Jtmp=Jtmp+(-tmpy(i,k)*log(h(i,k))-(1-tmpy(i,k))*log(1-h(i,k)));
    end;
end;
disp(size(J));
disp(size(Theta1));
J=(1/m)*Jtmp;
J1=0;
J2=0;
for i=1:size(Theta1,1)
    for k=2:size(Theta1,2)
        J1=J1+Theta1(i,k)^2;
    end;
end;

%J2 = sum(sum((Theta1(:,2:size(Theta1,2))').^2   )')+sum(sum((Theta2(:,2:size(Theta2,2))').^2   )');
J1=((lambda)/(2*m))*J1;

for i=1:size(Theta2,1)
    for k=2:size(Theta2,2)
        J2=J2+Theta2(i,k)^2;
    end;
end;
J2=((lambda)/(2*m))*J2;
J=J+J1+J2;

%
% Part 2: Implement the backpropagation algorithm to compute the gradients
%         Theta1_grad and Theta2_grad. You should return the partial derivatives of
%         the cost function with respect to Theta1 and Theta2 in Theta1_grad and
%         Theta2_grad, respectively. After implementing Part 2, you can check
%         that your implementation is correct by running checkNNGradients
%
%         Note: The vector y passed into the function is a vector of labels
%               containing values from 1..K. You need to map this vector into a 
%               binary vector of 1's and 0's to be used with the neural network
%               cost function.
%
d3=a3-tmpy;
disp("d3");
%disp(size(d3));

d2=(d3*Theta2(:,2:size(Theta2,2))).*sigmoidGradient(z2);
Theta1_grad = (1/m).*((d2)'*a1);
Theta2_grad=(1/m).*((d3)'*a2);

Theta1_grad(:,2:end) = Theta1_grad(:,2:end)+(lambda/m).*Theta1(:,2:end);
Theta2_grad(:,2:end)=Theta2_grad(:,2:end)+(lambda/m).*Theta2(:,2:end);

單元測試文件

Unit Test for [Feedforward and Cost Function]

[J] = nnCostFunction(sec(1:1:32)', 2, 4, 4,reshape(tan(1:32), 16, 2) / 5, 1 + mod(1:16,4)', 0)

J =  10.93


Unit Test for [Regularized CostFunction]


[J] = nnCostFunction(sec(1:1:32)', 2, 4, 4, reshape(tan(1:32),16, 2) / 5, 1 + mod(1:16,4)', 0.1)
J =  170.99


Unit Test for [Sigmoid Gradient]


[sigGrad] = sigmoidGradient(sec(1:1:5)')
sigGrad =

   0.117342
   0.076065
   0.195692
   0.146323
   0.027782

Unit Test for [randInitializeWeights]

rand("state", 1:10)
randInitializeWeights(3,3)
ans =

  -1.5850e-02   1.0170e-01  2.9234e-02   7.2907e-02
   1.9190e-02   7.5183e-02 -1.0621e-01   1.1156e-01
  -7.8807e-02   3.8784e-04  3.0667e-02   7.5665e-02


Unit Test for [Neural Network Gradient(Backpropagation)] 
[providedby Sindhuja V]

[J grad] = nnCostFunction(sec(1:1:32)', 2, 4, 4,reshape(tan(1:32), 16, 2) / 5, 1 + mod(1:16,4)', 0)
J =  10.931
grad =
  3.0518e-001
  7.1044e-002
  5.1307e-002
  6.2115e-001
  -7.4310e-002
  5.2173e-002
  -2.9711e-003
  -5.5435e-002
  -9.5647e-003
  -4.6995e-002
  1.0499e-004
  9.0452e-003
  -7.4506e-002
  7.4997e-001
  -1.7991e-002
  4.4328e-001
  -5.9840e-002
  5.3455e-001
  -7.8995e-002
  3.5278e-001
  -5.3284e-003
  8.4440e-002
  -3.4384e-002
  6.6441e-002
  -3.4314e-002
  3.3322e-001
  -7.0455e-002
  1.5063e-001
  -1.7708e-002
  2.7170e-001
  7.1129e-002
  1.4488e-001

% grad(1:12) are Theta1_grad
% grad(13:32) are Theta2_grad


Unit Test for [Regularized Gradient]

[J grad] = nnCostFunction(sec(1:1:32)', 2, 4, 4,reshape(tan(1:32), 16, 2) / 5, 1 + mod(1:16,4)', 0.1)
J =  170.99
grad =

   0.3051843
   0.0710438
   0.0513066
   0.6211486
  -0.0522766
   0.0586827
   0.0053191
  -0.0983900
  -0.0164243
  -0.0544438
   1.4123116
   0.0164517
  -0.0745060
   0.7499671
  -0.0179905
   0.4432801
  -0.0825542
   0.5440175
  -0.0726739
   0.3680935
  -0.0167392
   0.0781902
  -0.0461142
   0.0811755
  -0.0280090
   0.3428785
  -0.0918487
   0.1441408
  -0.0260627
   0.3122174
   0.0779614
   0.1523740
% grad(1:12) are Theta1_grad
% grad(13:32) are Theta2_grad



代碼和指導鏈接如下: http://pan.baidu.com/s/1kT1dPFh

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章