多元高斯分佈的一些性質

多元高斯分佈

p(xm,Σ)=1(2π)DΣe12(xm)Σ1(xm) p(x|m,\Sigma) = \frac{1}{\sqrt{(2\pi)^{D}|\Sigma|}}e^{-\frac{1}{2}(x-m)^\top \Sigma^{-1}(x-m)}
或者
p(xm,Σ)=(2π)D/2Σ1/2exp(12(xm)Σ1(xm)) p(x|m,\Sigma) = (2\pi)^{-D/2}|\Sigma|^{-1/2}\exp \left(-\frac{1}{2}(x-m)^\top \Sigma^{-1}(x-m)\right)
其中 x,mRD,ΣRD×Dx,m \in R^{D}, \Sigma \in R^{D\times D}.

記爲 xN(m,Σ)x\sim N(m,\Sigma).


邊際分佈

假設 x,yx,y 爲聯合高斯隨機變量:
[xy]N([μxμy],[ACCD])=N([μxμy],[A^C^C^D^]1) \left[ \begin{array}{c} x\\ y \end{array} \right] \sim N\left( \left[ \begin{array}{c} \mu_x\\ \mu_y \end{array} \right], \left[ \begin{array}{c} A & C\\ C^\top & D \end{array} \right] \right)= N\left( \left[ \begin{array}{c} \mu_x\\ \mu_y \end{array} \right], \left[ \begin{array}{c} \hat{A} & \hat{C}\\ \hat{C}^\top & \hat{D} \end{array} \right]^{-1} \right)

xN(μx,A) x \sim N(\mu_x, A)

條件分佈

假設 x,yx,y 爲聯合高斯隨機變量:
[xy]N([μxμy],[ACCD])=N([μxμy],[A^C^C^D^]1) \left[ \begin{array}{c} x\\ y \end{array} \right] \sim N\left( \left[ \begin{array}{c} \mu_x\\ \mu_y \end{array} \right], \left[ \begin{array}{c} A & C\\ C^\top & D \end{array} \right] \right)= N\left( \left[ \begin{array}{c} \mu_x\\ \mu_y \end{array} \right], \left[ \begin{array}{c} \hat{A} & \hat{C}\\ \hat{C}^\top & \hat{D} \end{array} \right]^{-1} \right)

xyN(μx+CB1(yμy),ACB1C) x| y \sim N(\mu_x + CB^{-1}(y-\mu_y), A - CB^{-1}C^\top)

乘積

兩個高斯分佈的乘積爲未歸一化的高斯分佈:
N(xa,A)N(yb,B)=Z1N(xc,C) N(x|a,A)N(y|b,B) = Z^{-1}N(x|c,C)
其中
c=C(A1a+B1b)C=(A1+B1)1Z=(2π)D/2A+B1/2exp(12(ab)(A+B)1(ab)) c = C(A^{-1}a + B^{-1}b) \\ C = (A^{-1} + B^{-1})^{-1} \\ Z = (2\pi)^{-D/2}|A+B|^{-1/2}\exp \left(-\frac{1}{2}(a-b)^\top (A+B)^{-1}(a-b)\right)

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章