代碼分析 | 單細胞轉錄組數據整合詳解

兩種整合方法詳解

NGS系列文章包括NGS基礎、轉錄組分析 (Nature重磅綜述|關於RNA-seq你想知道的全在這)、ChIP-seq分析 (ChIP-seq基本分析流程)、單細胞測序分析 (重磅綜述:三萬字長文讀懂單細胞RNA測序分析的最佳實踐教程 (原理、代碼和評述))、DNA甲基化分析、重測序分析、GEO數據挖掘(典型醫學設計實驗GEO數據分析 (step-by-step) - Limma差異分析、火山圖、功能富集)等內容。

單細胞轉錄組數據整合的方法多種多樣,當然軟件也是層出不窮,有的感覺矯正效應過強,導致不是一種細胞類型的細胞也會整合在一起,讓人難以評判。前段時間有同學問我她有不同人相同腫瘤的樣本,問我應該使用Merge還是使用CCA(單細胞分析Seurat使用相關的10個問題答疑精選!),我只能說實話我是不知道的,如果是我我都會試一試。由於腫瘤細胞的異質性過強,並且具有極大的樣本差異性,如果使用CCA等進行整合,不知道會不會影響分析結果。並且在文章中我看的往往腫瘤樣本會因爲異質性導致無法重合,但其微環境如T、B等細胞還是可以有效的整合在一起,所以,保險起見,try a lot,select one!

本次接着上兩節進行的芬蘭CSC-IT科學中心主講的生物信息課程(https://www.csc.fi/web/training/-/scrnaseq)視頻,官網上還提供了練習素材以及詳細代碼,今天就來練習一下單細胞數據整合的過程。

在本教程中將探討不同的整合多個單細胞RNA-seq數據集方法。我們將探索兩種不同方法的校正整個數據集批次效應的效果並定量評估整合數據的質量。

數據集

在本教程中,我們將使用來自四種技術的3種不同的人類胰島細胞數據集:CelSeq(GSE81076)CelSeq2(GSE85241)Fluidigm C1(GSE86469)SMART-Seq2(E-MTAB-5061)

原始數據矩陣和metadata下載鏈接:

https://www.dropbox.com/s/1zxbn92y5du9pu0/pancreas_v3_files.tar.gz?dl=1

加載所需R包

suppressMessages(require(Seurat))
suppressMessages(require(ggplot2))
suppressMessages(require(cowplot))
suppressMessages(require(scater))
suppressMessages(require(scran))
suppressMessages(require(BiocParallel))suppressMessages(require(BiocNeighbors))

Seurat (anchors and CCA)

我們將使用在文章Comprehensive Integration of Single Cell Data[1]中所提到的數據整合方法。

數據處理

加載表達式矩陣和metadata。metadata文件包含四個數據集中每個細胞所用技術平臺和細胞類型註釋。

pancreas.data <- readRDS(file = "session-integration_files/pancreas_expression_matrix.rds")metadata <- readRDS(file = "session-integration_files/pancreas_metadata.rds")

創建具有所有數據集的Seurat對象。

pancreas <- CreateSeuratObject(pancreas.data, meta.data = metadata)

在應用任何批次校正之前先看一下數據集。我們先執行標準預處理(log-normalization)並基於方差穩定化轉換(“vst”)識別變量特徵,接下來對集成數據進行歸一化、運行PCA並使用UMAP可視化結果。集成數據集是按細胞類型而不是測序平臺進行聚類。

# 標準化並查找可變基因
pancreas <- NormalizeData(pancreas, verbose = FALSE)
pancreas <- FindVariableFeatures(pancreas, selection.method = "vst", nfeatures = 2000, verbose = FALSE)

# 運行標準流程並進行可視化
pancreas <- ScaleData(pancreas, verbose = FALSE)
pancreas <- RunPCA(pancreas, npcs = 30, verbose = FALSE)
pancreas <- RunUMAP(pancreas, reduction = "pca", dims = 1:30)
p1 <- DimPlot(pancreas, reduction = "umap", group.by = "tech")
p2 <- DimPlot(pancreas, reduction = "umap", group.by = "celltype", label = TRUE, repel = TRUE) +
    NoLegend()plot_grid(p1, p2)

將合併的對象分成一個列表,每個數據集都作爲一個元素。通過執行標準預處理(log-normalization)並基於方差穩定化轉換(“vst”)分別爲每個數據集查找變化的基因。

pancreas.list <- SplitObject(pancreas, split.by = "tech")

for (i in 1:length(pancreas.list)) {
    pancreas.list[[i]] <- NormalizeData(pancreas.list[[i]], verbose = FALSE)
    pancreas.list[[i]] <- FindVariableFeatures(pancreas.list[[i]], selection.method = "vst", nfeatures = 2000,
        verbose = FALSE)}

4個胰島細胞數據集的整合

使用FindIntegrationAnchors函數來識別錨點(anchors),該函數的輸入數據是Seurat對象的列表。

reference.list <- pancreas.list[c("celseq", "celseq2", "smartseq2", "fluidigmc1")]pancreas.anchors <- FindIntegrationAnchors(object.list = reference.list, dims = 1:30)
## Computing 2000 integration features

## Scaling features for provided objects

## Finding all pairwise anchors

## Running CCA

## Merging objects

## Finding neighborhoods

## Finding anchors

##  Found 3499 anchors

## Filtering anchors

##  Retained 2821 anchors

## Extracting within-dataset neighbors

## Running CCA

## Merging objects

## Finding neighborhoods

## Finding anchors

##  Found 3515 anchors

## Filtering anchors

##  Retained 2701 anchors

## Extracting within-dataset neighbors

## Running CCA

## Merging objects

## Finding neighborhoods

## Finding anchors

##  Found 6173 anchors

## Filtering anchors

##  Retained 4634 anchors

## Extracting within-dataset neighbors

## Running CCA

## Merging objects

## Finding neighborhoods

## Finding anchors

##  Found 2176 anchors

## Filtering anchors

##  Retained 1841 anchors

## Extracting within-dataset neighbors

## Running CCA

## Merging objects

## Finding neighborhoods

## Finding anchors

##  Found 2774 anchors

## Filtering anchors

##  Retained 2478 anchors

## Extracting within-dataset neighbors

## Running CCA

## Merging objects

## Finding neighborhoods

## Finding anchors

##  Found 2723 anchors

## Filtering anchors

##  Retained 2410 anchors
## Extracting within-dataset neighbors

然後將這些錨(anchors)傳遞給IntegrateData函數,該函數返回Seurat對象。

pancreas.integrated <- IntegrateData(anchorset = pancreas.anchors, dims = 1:30)
## Merging dataset 4 into 2

## Extracting anchors for merged samples

## Finding integration vectors

## Finding integration vector weights

## Integrating data

## Merging dataset 1 into 2 4

## Extracting anchors for merged samples

## Finding integration vectors

## Finding integration vector weights

## Integrating data

## Merging dataset 3 into 2 4 1

## Extracting anchors for merged samples

## Finding integration vectors

## Finding integration vector weights
## Integrating data

運行IntegrateData之後,Seurat對象將包含一個具有整合(或“批次校正”)表達矩陣的新Assay。請注意,原始值(未校正的值)仍存儲在“RNA”分析的對象中,因此可以來回切換。

然後可以使用這個新的整合矩陣進行下游分析和可視化,我們在這裏做了整合數據標準化、運行PCA並使用UMAP可視化結果。

# switch to integrated assay. The variable features of this assay are automatically set during
# IntegrateData
DefaultAssay(pancreas.integrated) <- "integrated"

# 運行標準流程並進行可視化
pancreas.integrated <- ScaleData(pancreas.integrated, verbose = FALSE)
pancreas.integrated <- RunPCA(pancreas.integrated, npcs = 30, verbose = FALSE)
pancreas.integrated <- RunUMAP(pancreas.integrated, reduction = "pca", dims = 1:30)
p1 <- DimPlot(pancreas.integrated, reduction = "umap", group.by = "tech")
p2 <- DimPlot(pancreas.integrated, reduction = "umap", group.by = "celltype", label = TRUE, repel = TRUE) +
    NoLegend()plot_grid(p1, p2)

Mutual Nearest Neighbor (MNN)

整合單細胞RNA-seq數據的另一種方法是使用相互最近鄰(MNN)批次校正方法,可參考Haghverdi et al[2]。

首先可以直接從計數矩陣創建SingleCellExperiment(SCE)對象,也可以直接從Seurat轉換爲SCE。

celseq.data <- as.SingleCellExperiment(pancreas.list$celseq)
celseq2.data <- as.SingleCellExperiment(pancreas.list$celseq2)
fluidigmc1.data <- as.SingleCellExperiment(pancreas.list$fluidigmc1)smartseq2.data <- as.SingleCellExperiment(pancreas.list$smartseq2)

數據處理

查找共同基因並將每個數據集簡化爲那些共同基因:

keep_genes <- Reduce(intersect, list(rownames(celseq.data),rownames(celseq2.data),
                                     rownames(fluidigmc1.data),rownames(smartseq2.data)))
celseq.data <- celseq.data[match(keep_genes, rownames(celseq.data)), ]
celseq2.data <- celseq2.data[match(keep_genes, rownames(celseq2.data)), ]
fluidigmc1.data <- fluidigmc1.data[match(keep_genes, rownames(fluidigmc1.data)), ]smartseq2.data <- smartseq2.data[match(keep_genes, rownames(smartseq2.data)), ]

通過查找具有異常低的總計數特徵(基因)總數的異常值,使用calculateQCMetrics()計算QC來確定低質量細胞(對一篇單細胞RNA綜述的評述:細胞和基因質控參數的選擇)。

## celseq.data
celseq.data <- calculateQCMetrics(celseq.data)
low_lib_celseq.data <- isOutlier(celseq.data$log10_total_counts, type="lower", nmad=3)
low_genes_celseq.data <- isOutlier(celseq.data$log10_total_features_by_counts, type="lower", nmad=3)
celseq.data <- celseq.data[, !(low_lib_celseq.data | low_genes_celseq.data)]
## celseq2.data
celseq2.data <- calculateQCMetrics(celseq2.data)
low_lib_celseq2.data <- isOutlier(celseq2.data$log10_total_counts, type="lower", nmad=3)
low_genes_celseq2.data <- isOutlier(celseq2.data$log10_total_features_by_counts, type="lower", nmad=3)
celseq2.data <- celseq2.data[, !(low_lib_celseq2.data | low_genes_celseq2.data)]
## fluidigmc1.data
fluidigmc1.data <- calculateQCMetrics(fluidigmc1.data)
low_lib_fluidigmc1.data <- isOutlier(fluidigmc1.data$log10_total_counts, type="lower", nmad=3)
low_genes_fluidigmc1.data <- isOutlier(fluidigmc1.data$log10_total_features_by_counts, type="lower", nmad=3)
fluidigmc1.data <- fluidigmc1.data[, !(low_lib_fluidigmc1.data | low_genes_fluidigmc1.data)]
## smartseq2.data
smartseq2.data <- calculateQCMetrics(smartseq2.data)
low_lib_smartseq2.data <- isOutlier(smartseq2.data$log10_total_counts, type="lower", nmad=3)
low_genes_smartseq2.data <- isOutlier(smartseq2.data$log10_total_features_by_counts, type="lower", nmad=3)smartseq2.data <- smartseq2.data[, !(low_lib_smartseq2.data | low_genes_smartseq2.data)]

使用scran包的computeSumFactors()normalize()函數計算大小(size)並對數據進行標準化:

# 計算尺寸因子(sizefactors)
celseq.data <- computeSumFactors(celseq.data)
celseq2.data <- computeSumFactors(celseq2.data)
fluidigmc1.data <- computeSumFactors(fluidigmc1.data)
smartseq2.data <- computeSumFactors(smartseq2.data)

# 標準化
celseq.data <- normalize(celseq.data)
celseq2.data <- normalize(celseq2.data)
fluidigmc1.data <- normalize(fluidigmc1.data)smartseq2.data <- normalize(smartseq2.data)

特徵選擇:我們使用TrendVar()decomposeVar()函數來計算每個基因的變異(variance),並將其分爲技術平臺和生物兩個部分的差異。

## celseq.data
fit_celseq.data <- trendVar(celseq.data, use.spikes=FALSE)
dec_celseq.data <- decomposeVar(celseq.data, fit_celseq.data)
dec_celseq.data$Symbol_TENx <- rowData(celseq.data)$Symbol_TENx
dec_celseq.data <- dec_celseq.data[order(dec_celseq.data$bio, decreasing = TRUE), ]

## celseq2.data
fit_celseq2.data <- trendVar(celseq2.data, use.spikes=FALSE)
dec_celseq2.data <- decomposeVar(celseq2.data, fit_celseq2.data)
dec_celseq2.data$Symbol_TENx <- rowData(celseq2.data)$Symbol_TENx
dec_celseq2.data <- dec_celseq2.data[order(dec_celseq2.data$bio, decreasing = TRUE), ]

## fluidigmc1.data
fit_fluidigmc1.data <- trendVar(fluidigmc1.data, use.spikes=FALSE)
dec_fluidigmc1.data <- decomposeVar(fluidigmc1.data, fit_fluidigmc1.data)
dec_fluidigmc1.data$Symbol_TENx <- rowData(fluidigmc1.data)$Symbol_TENx
dec_fluidigmc1.data <- dec_fluidigmc1.data[order(dec_fluidigmc1.data$bio, decreasing = TRUE), ]

## smartseq2.data
fit_smartseq2.data <- trendVar(smartseq2.data, use.spikes=FALSE)
dec_smartseq2.data <- decomposeVar(smartseq2.data, fit_smartseq2.data)
dec_smartseq2.data$Symbol_TENx <- rowData(smartseq2.data)$Symbol_TENx
dec_smartseq2.data <- dec_smartseq2.data[order(dec_smartseq2.data$bio, decreasing = TRUE), ]

#選擇在所有數據集中共有的且信息最豐富的基因:
universe <- Reduce(intersect, list(rownames(dec_celseq.data),rownames(dec_celseq2.data),
                                   rownames(dec_fluidigmc1.data),rownames(dec_smartseq2.data)))
mean.bio <- (dec_celseq.data[universe,"bio"] + dec_celseq2.data[universe,"bio"] +
               dec_fluidigmc1.data[universe,"bio"] + dec_smartseq2.data[universe,"bio"])/4hvg_genes <- universe[mean.bio > 0]

將數據集合併到SingleCellExperiment中:

# 總原始counts的整合
counts_pancreas <- cbind(counts(celseq.data), counts(celseq2.data),
                         counts(fluidigmc1.data), counts(smartseq2.data))

# 總的標準化後的counts整合 (with multibatch normalization)
logcounts_pancreas <- cbind(logcounts(celseq.data), logcounts(celseq2.data),
                            logcounts(fluidigmc1.data), logcounts(smartseq2.data))

# 構建整合數據的sce對象
sce <- SingleCellExperiment(
    assays = list(counts = counts_pancreas, logcounts = logcounts_pancreas),
    rowData = rowData(celseq.data), # same as rowData(pbmc4k)
    colData = rbind(colData(celseq.data), colData(celseq2.data),
                    colData(fluidigmc1.data), colData(smartseq2.data))
)

# 將前面的hvg_genes存儲到sce對象的metadata slot中:metadata(sce)$hvg_genes <- hvg_genes

用MNN處理批次效應之前先看一下這些datasets:

sce <- runPCA(sce,
              ncomponents = 20,
              feature_set = hvg_genes,
              method = "irlba")

names(reducedDims(sce)) <- "PCA_naive"

p1 <- plotReducedDim(sce, use_dimred = "PCA_naive", colour_by = "tech") +
    ggtitle("PCA Without batch correction")
p2 <- plotReducedDim(sce, use_dimred = "PCA_naive", colour_by = "celltype") +
    ggtitle("PCA Without batch correction")plot_grid(p1, p2)

使用MNN進行數據整合

scran軟件包中的MNN方法利用一種新方法來調整批次效應-fastMNN()

 

fastMNN()函數返回的是降維數據表示形式,該表示形式的使用與其他較低維度的表示形式(例如PCA)類似。

 

跑fastMNN()之前,我們需要先rescale每一個批次,來調整不同批次之間的測序深度。用scran包裏的multiBatchNorm()函數對size factor進行調整後,重新計算log標準化的表達值以適應不同SingleCellExperiment對象的系統差異。之前的size factors僅能移除單個批次裏細胞之間的bias。現在我們通過消除批次之間技術差異來提高校正的質量。

rescaled <- multiBatchNorm(celseq.data, celseq2.data, fluidigmc1.data, smartseq2.data)
celseq.data_rescaled <- rescaled[[1]]
celseq2.data_rescaled <- rescaled[[2]]
fluidigmc1.data_rescaled <- rescaled[[3]]smartseq2.data_rescaled <- rescaled[[4]]

 

跑fastMNN,把降維的MNN representation存在sce對象的reducedDimsslot裏:

mnn_out <- fastMNN(celseq.data_rescaled,
                   celseq2.data_rescaled,
                   fluidigmc1.data_rescaled,
                   smartseq2.data_rescaled,
                   subset.row = metadata(sce)$hvg_genes,
                   k = 20, d = 50, approximate = TRUE,
                   # BPPARAM = BiocParallel::MulticoreParam(8),
                   BNPARAM = BiocNeighbors::AnnoyParam())
reducedDim(sce, "MNN") <- mnn_out$correct

注意:fastMNN()不會生成批次校正的表達矩陣。因此,fastMNN()的結果應僅被視爲降維表示,適合直接繪圖,如TSNE/ UMAP、聚類和依賴於此類結果的軌跡分析(NBT|45種單細胞軌跡推斷方法比較,110個實際數據集和229個合成數據集)。

p1 <- plotReducedDim(sce, use_dimred = "MNN", colour_by = "tech") + ggtitle("MNN Ouput Reduced Dimensions")
p2 <- plotReducedDim(sce, use_dimred = "MNN", colour_by = "celltype") + ggtitle("MNN Ouput Reduced Dimensions")plot_grid(p1, p2)

Session info

sessionInfo()
## R version 3.5.3 (2019-03-11)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 17763)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.1252
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets## [8] methods   base

[1]:https://www.biorxiv.org/content/10.1101/460147v1[2]:https://www.nature.com/articles/nbt.4091

撰文:Tiger校對:生信寶典

你可能還想看

 

“harmony”整合不同平臺的單細胞數據之旅

 

Cell 深度 一套普遍適用於各類單細胞測序數據集的錨定整合方案

 

重磅綜述:三萬字長文讀懂單細胞RNA測序分析的最佳實踐教程 (原理、代碼和評述)

 

如何使用Bioconductor進行單細胞分析?

 

如何火眼金睛鑑定那些單細胞轉錄組中的混雜因素

 

什麼?你做的差異基因方法不合適?

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章