scikit對超參數模型優化對比(網格搜索與隨機搜索對比)

https://scikit-learn.org/stable/auto_examples/model_selection/plot_randomized_search.html#sphx-glr-auto-examples-model-selection-plot-randomized-search-py

超參數優化的方法  引自維基百科

Hyperparameter optimization

From Wikipedia, the free encyclopedia

Jump to navigationJump to search

In machine learninghyperparameter optimization or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process. By contrast, the values of other parameters (typically node weights) are learned.

The same kind of machine learning model can require different constraints, weights or learning rates to generalize different data patterns. These measures are called hyperparameters, and have to be tuned so that the model can optimally solve the machine learning problem. Hyperparameter optimization finds a tuple of hyperparameters that yields an optimal model which minimizes a predefined loss function on given independent data.[1] The objective function takes a tuple of hyperparameters and returns the associated loss.[1] Cross-validation is often used to estimate this generalization performance.[2]

 

Contents

Approaches[edit]

Grid search[edit]

The traditional way of performing hyperparameter optimization has been grid search, or a parameter sweep, which is simply an exhaustive searching through a manually specified subset of the hyperparameter space of a learning algorithm. A grid search algorithm must be guided by some performance metric, typically measured by cross-validation on the training set[3] or evaluation on a held-out validation set.[4]

Since the parameter space of a machine learner may include real-valued or unbounded value spaces for certain parameters, manually set bounds and discretization may be necessary before applying grid search.

For example, a typical soft-margin SVM classifier equipped with an RBF kernel has at least two hyperparameters that need to be tuned for good performance on unseen data: a regularization constant C and a kernel hyperparameter γ. Both parameters are continuous, so to perform grid search, one selects a finite set of "reasonable" values for each, say

{\displaystyle C\in \{10,100,1000\}}

{\displaystyle \gamma \in \{0.1,0.2,0.5,1.0\}}

Grid search then trains an SVM with each pair (C, γ) in the Cartesian product of these two sets and evaluates their performance on a held-out validation set (or by internal cross-validation on the training set, in which case multiple SVMs are trained per pair). Finally, the grid search algorithm outputs the settings that achieved the highest score in the validation procedure.

Grid search suffers from the curse of dimensionality, but is often embarrassingly parallel because the hyperparameter settings it evaluates are typically independent of each other.[2]

Random search[edit]

Random Search replaces the exhaustive enumeration of all combinations by selecting them randomly. This can be simply applied to the discrete setting described above, but also generalizes to continuous and mixed spaces. It can outperform Grid search, especially when only a small number of hyperparameters affects the final performance of the machine learning algorithm.[2] In this case, the optimization problem is said to have a low intrinsic dimensionality.[5] Random Search is also embarrassingly parallel, and additionally allows the inclusion of prior knowledge by specifying the distribution from which to sample.

Bayesian optimization[edit]

Main article: Bayesian optimization

Bayesian optimization is a global optimization method for noisy black-box functions. Applied to hyperparameter optimization, Bayesian optimization builds a probabilistic model of the function mapping from hyperparameter values to the objective evaluated on a validation set. By iteratively evaluating a promising hyperparameter configuration based on the current model, and then updating it, Bayesian optimization, aims to gather observations revealing as much information as possible about this function and, in particular, the location of the optimum. It tries to balance exploration (hyperparameters for which the outcome is most uncertain) and exploitation (hyperparameters expected close to the optimum). In practice, Bayesian optimization has been shown[6][7][8][9] to obtain better results in fewer evaluations compared to grid search and random search, due to the ability to reason about the quality of experiments before they are run.

Gradient-based optimization[edit]

For specific learning algorithms, it is possible to compute the gradient with respect to hyperparameters and then optimize the hyperparameters using gradient descent. The first usage of these techniques was focused on neural networks.[10] Since then, these methods have been extended to other models such as support vector machines[11] or logistic regression.[12]

A different approach in order to obtain a gradient with respect to hyperparameters consists in differentiating the steps of an iterative optimization algorithm using automatic differentiation.[13][14] [15]

Evolutionary optimization[edit]

Main article: Evolutionary algorithm

Evolutionary optimization is a methodology for the global optimization of noisy black-box functions. In hyperparameter optimization, evolutionary optimization uses evolutionary algorithms to search the space of hyperparameters for a given algorithm.[7] Evolutionary hyperparameter optimization follows a process inspired by the biological concept of evolution:

  1. Create an initial population of random solutions (i.e., randomly generate tuples of hyperparameters, typically 100+)
  2. Evaluate the hyperparameters tuples and acquire their fitness function (e.g., 10-fold cross-validation accuracy of the machine learning algorithm with those hyperparameters)
  3. Rank the hyperparameter tuples by their relative fitness
  4. Replace the worst-performing hyperparameter tuples with new hyperparameter tuples generated through crossover and mutation
  5. Repeat steps 2-4 until satisfactory algorithm performance is reached or algorithm performance is no longer improving

Evolutionary optimization has been used in hyperparameter optimization for statistical machine learning algorithms,[7] automated machine learningdeep neural network architecture search,[16][17] as well as training of the weights in deep neural networks.[18]

Population-based[edit]

Population Based Training (PBT) learns both hyperparameter values and network weights. Multiple learning processes operate independently, using different hyperparameters. Poorly performing models are iteratively replaced with models that adopt modified hyperparameter values from a better performer. The modification allows the hyperparameters to evolve and eliminates the need for manual hypertuning. The process makes no assumptions regarding model architecture, loss functions or training procedures.[19]

Others[edit]

RBF[20] and spectral[21] approaches have also been developed.

Open-source software[edit]

Grid search[edit]

  • Katib is a Kubernetes-native system which includes grid search.
  • scikit-learn is a Python package which includes grid search.
  • Tune is a Python library for distributed hyperparameter tuning and supports grid search.
  • Talos includes grid search for Keras.
  • H2O AutoML provides grid search over algorithms in the H2O open source machine learning library.

Random search[edit]

  • hyperopt, also via hyperas and hyperopt-sklearn, are Python packages which include random search.
  • Katib is a Kubernetes-native system which includes random search.
  • scikit-learn is a Python package which includes random search.
  • Tune is a Python library for distributed hyperparameter tuning and supports random search over arbitrary parameter distributions.
  • Talos includes a customizable random search for Keras.

Bayesian[edit]

  • Auto-sklearn[22] is a Bayesian hyperparameter optimization layer on top of scikit-learn.
  • Ax[23] is a Python-based experimentation platform that supports Bayesian optimization and bandit optimization as exploration strategies.
  • BOCS is a Matlab package which uses semidefinite programming for minimizing a black-box function over discrete inputs.[24] A Python 3 implementation is also included.
  • HpBandSter is a Python package which combines Bayesian optimization with bandit-based methods.[25]
  • Katib is a Kubernetes-native system which includes bayesian optimization.
  • mlrMBO, also with mlr, is an R package for model-based/Bayesian optimization of black-box functions.
  • scikit-optimize is a Python package or sequential model-based optimization with a scipy.optimize interface.[26]
  • SMAC SMAC is a Python/Java library implementing Bayesian optimization.[27]
  • tuneRanger is an R package for tuning random forests using model-based optimization.
  • optuna is a Python package for black box optimization, compatible with arbitrary functions that need to be optimized.

Gradient-based optimization[edit]

  • FAR-HO is a Python package containing Tensorflow implementations and wrappers for gradient-based hyperparamteter optimization with forward and reverse mode algorithmic differentiation.
  • XGBoost is an open-source software library which provides a gradient boosting framework for C++, Java, Python, R, and Julia.

Evolutionary[edit]

  • deap is a Python framework for general evolutionary computation which is flexible and integrates with parallelization packages like scoop and pyspark, and other Python frameworks like sklearn via sklearn-deap.
  • devol is a Python package that performs Deep Neural Network architecture search using genetic programming.
  • nevergrad[28] is a Python package which includes population control methods and particle swarm optimization.[29]
  • Tune is a Python library for distributed hyperparameter tuning and leverages nevergrad for evolutionary algorithm support.

Other[edit]

  • dlib[30] is a C++ package with a Python API which has a parameter-free optimizer based on LIPO and trust region optimizers working in tandem.[31]
  • Tune is a Python library for hyperparameter tuning execution and integrates with/scales many existing hyperparameter optimization libraries such as hyperoptnevergrad, and scikit-optimize.
  • Harmonica is a Python package for spectral hyperparameter optimization.[21]
  • hyperopt, also via hyperas and hyperopt-sklearn, are Python packages which include Tree of Parzen Estimators based distributed hyperparameter optimization.
  • Katib is a Kubernetes-native system which includes grid, random search, bayesian optimization, hyperband, and NAS based on reinforcement learning.
  • nevergrad[28] is a Python package for gradient-free optimization using techniques such as differential evolution, sequential quadratic programming, fastGA, covariance matrix adaptation, population control methods, and particle swarm optimization.[29]
  • nni is a Python package which includes hyperparameter tuning for neural networks in local and distributed environments. Its techniques include TPE, random, anneal, evolution, SMAC, batch, grid, and hyperband.
  • parameter-sherpa is a similar Python package which includes several techniques grid search, Bayesian and genetic Optimization
  • pycma is a Python implementation of Covariance Matrix Adaptation Evolution Strategy.
  • rbfopt is a Python package that uses a radial basis function model[20]

Commercial services[edit]

  • Amazon Sagemaker uses Gaussian processes to tune hyperparameters.
  • BigML OptiML supports mixed search domains
  • Google HyperTune supports mixed search domains
  • Indie Solver supports multiobjective, multifidelity and constraint optimization
  • Mind Foundry OPTaaS supports mixed search domains, multiobjective, constraints, parallel optimization and surrogate models.
  • SigOpt supports mixed search domains, multiobjective, multisolution, multifidelity, constraint (linear and black-box), and parallel optimization.

See also[edit]

References[edit]

  1. Jump up to:a b Claesen, Marc; Bart De Moor (2015). "Hyperparameter Search in Machine Learning". arXiv:1502.02127 [cs.LG].
  2. Jump up to:a b c Bergstra, James; Bengio, Yoshua (2012). "Random Search for Hyper-Parameter Optimization" (PDF). Journal of Machine Learning Research13: 281–305.
  3. ^ Chin-Wei Hsu, Chih-Chung Chang and Chih-Jen Lin (2010). A practical guide to support vector classification. Technical Report, National Taiwan University.
  4. ^ Chicco D (December 2017). "Ten quick tips for machine learning in computational biology"BioData Mining10 (35): 35. doi:10.1186/s13040-017-0155-3PMC 5721660PMID 29234465.
  5. ^ Ziyu, Wang; Frank, Hutter; Masrour, Zoghi; David, Matheson; Nando, de Feitas (2016). "Bayesian Optimization in a Billion Dimensions via Random Embeddings". Journal of Artificial Intelligence Research55: 361–387. arXiv:1301.1942doi:10.1613/jair.4806.
  6. ^ Hutter, Frank; Hoos, Holger; Leyton-Brown, Kevin (2011), "Sequential model-based optimization for general algorithm configuration" (PDF), Learning and Intelligent Optimization, Lecture Notes in Computer Science, 6683: 507–523, CiteSeerX 10.1.1.307.8813doi:10.1007/978-3-642-25566-3_40ISBN 978-3-642-25565-6
  7. Jump up to:a b c Bergstra, James; Bardenet, Remi; Bengio, Yoshua; Kegl, Balazs (2011), "Algorithms for hyper-parameter optimization" (PDF), Advances in Neural Information Processing Systems
  8. ^ Snoek, Jasper; Larochelle, Hugo; Adams, Ryan (2012). "Practical Bayesian Optimization of Machine Learning Algorithms" (PDF). Advances in Neural Information Processing SystemsarXiv:1206.2944Bibcode:2012arXiv1206.2944S.
  9. ^ Thornton, Chris; Hutter, Frank; Hoos, Holger; Leyton-Brown, Kevin (2013). "Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms" (PDF). Knowledge Discovery and Data MiningarXiv:1208.3719Bibcode:2012arXiv1208.3719T.
  10. ^ Larsen, Jan; Hansen, Lars Kai; Svarer, Claus; Ohlsson, M (1996). "Design and regularization of neural networks: the optimal use of a validation set" (PDF). Proceedings of the 1996 IEEE Signal Processing Society Workshop: 62–71. CiteSeerX 10.1.1.415.3266doi:10.1109/NNSP.1996.548336ISBN 0-7803-3550-3.
  11. ^ Olivier Chapelle; Vladimir Vapnik; Olivier Bousquet; Sayan Mukherjee (2002). "Choosing multiple parameters for support vector machines" (PDF). Machine Learning46: 131–159. doi:10.1023/a:1012450327387.
  12. ^ Chuong B; Chuan-Sheng Foo; Andrew Y Ng (2008). "Efficient multiple hyperparameter learning for log-linear models" (PDF). Advances in Neural Information Processing Systems 20.
  13. ^ Domke, Justin (2012). "Generic Methods for Optimization-Based Modeling"(PDF). Aistats22.
  14. ^ Maclaurin, Douglas; Duvenaud, David; Adams, Ryan P. (2015). "Gradient-based Hyperparameter Optimization through Reversible Learning". arXiv:1502.03492[stat.ML].
  15. ^ Franceschi, Luca; Donini, Michele; Frasconi, Paolo; Pontil, Massimiliano (2017). "Forward and Reverse Gradient-Based Hyperparameter Optimization" (PDF). Proceedings of the 34th International Conference on Machine LearningarXiv:1703.01785Bibcode:2017arXiv170301785F.
  16. ^ Miikkulainen R, Liang J, Meyerson E, Rawal A, Fink D, Francon O, Raju B, Shahrzad H, Navruzyan A, Duffy N, Hodjat B (2017). "Evolving Deep Neural Networks". arXiv:1703.00548 [cs.NE].
  17. ^ Jaderberg M, Dalibard V, Osindero S, Czarnecki WM, Donahue J, Razavi A, Vinyals O, Green T, Dunning I, Simonyan K, Fernando C, Kavukcuoglu K (2017). "Population Based Training of Neural Networks". arXiv:1711.09846 [cs.LG].
  18. ^ Such FP, Madhavan V, Conti E, Lehman J, Stanley KO, Clune J (2017). "Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning". arXiv:1712.06567 [cs.NE].
  19. ^ Li, Ang; Spyra, Ola; Perel, Sagi; Dalibard, Valentin; Jaderberg, Max; Gu, Chenjie; Budden, David; Harley, Tim; Gupta, Pramod (2019-02-05). "A Generalized Framework for Population Based Training". arXiv:1902.01894 [cs.AI].
  20. Jump up to:a b Diaz, Gonzalo; Fokoue, Achille; Nannicini, Giacomo; Samulowitz, Horst (2017). "An effective algorithm for hyperparameter optimization of neural networks". arXiv:1705.08520 [cs.AI].
  21. Jump up to:a b Hazan, Elad; Klivans, Adam; Yuan, Yang (2017). "Hyperparameter Optimization: A Spectral Approach". arXiv:1706.00764 [cs.LG].
  22. ^ Feurer M, Klein A, Eggensperger K, Springenberg J, Blum M, Hutter F (2015). "Efficient and Robust Automated Machine Learning"Advances in Neural Information Processing Systems 28 (NIPS 2015): 2962–2970.
  23. ^ "Open-sourcing Ax and BoTorch: New AI tools for adaptive experimentation". 2019.
  24. ^ Baptista, Ricardo; Poloczek, Matthias (2018). "Bayesian Optimization of Combinatorial Structures". arXiv:1806.08838 [stat.ML].
  25. ^ Falkner, Stefan; Klein, Aaron; Hutter, Frank (2018). "BOHB: Robust and Efficient Hyperparameter Optimization at Scale". arXiv:1807.01774 [stat.ML].
  26. ^ "skopt API documentation"scikit-optimize.github.io.
  27. ^ Hutter F, Hoos HH, Leyton-Brown K. "Sequential Model-Based Optimization for General Algorithm Configuration" (PDF). Proceedings of the Conference on Learning and Intelligent OptimizatioN (LION 5).
  28. Jump up to:a b "[QUESTION] How to use to optimize NN hyperparameters · Issue #1 · facebookresearch/nevergrad"GitHub.
  29. Jump up to:a b "Nevergrad: An open source tool for derivative-free optimization". December 20, 2018.
  30. ^ "A toolkit for making real world machine learning and data analysis applications in C++: davisking/dlib". February 25, 2019 – via GitHub.
  31. ^ King

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章