January, 2019

I have to say I’m not that type of person who keeps a determined mind on a certain thing, after a month of attempt. If any words appropriate to describe my study, it should be “Always interested in everything, never about to start up with anything.” That’s a shame, indeed.
With the end of the last year and the arrival of my MacBook Pro, I’m afraid there will be many more realms awaiting my exploration. I’m finally ready to establish my first individual blog under the help of Github Pages (Perhaps as well with Google). What’s tremendous lies as the final exams, which mayhap occupy a great amount of my individual time for review. Anyway, I’m on my path.

A Brief Review of Calculator

A mindmap for the present study on calculate:在這裏插入圖片描述

Concepts

CONCEPTS FORMAT INTRODUCTION
limit
of function
limxx0f(x)=A\lim\limits_{x\to x_0}f(x)=A (ϵδ)\epsilon-\delta) ϵ>0,δ>0;\forall\epsilon > 0, \exist\delta > 0;
0<f(x)A<ϵ:xU˚(x0,δ)0<\vert f(x) - A \vert <\epsilon: x \in \mathring{U}(x_0,\delta)
right limit
of function
f+(x)=f(x+)=limxx0+f(x)=Af_+(x)=f(x^+)=\lim\limits_{x\to x_0^+}f(x)=A (ϵδ)\epsilon-\delta) ϵ>0,δ>0;\forall\epsilon > 0, \exist\delta > 0;
0<f(x)A<ϵ:0<xx0<δ0<\vert f(x) - A \vert <\epsilon: 0<x-x_0<\delta
left limit
of function
f(x)=f(x)=limxx0f(x)=Af_-(x)=f(x^-)=\lim\limits_{x\to x_0^-}f(x)=A (ϵδ)\epsilon-\delta) ϵ>0,δ>0;\forall\epsilon > 0, \exist\delta > 0;
0<f(x)A<ϵ:0<x0x<δ0<\vert f(x) - A \vert <\epsilon: 0<x_0-x<\delta
bounded
function
f(x)<M:\vert f(x)\vert<M:
M>0{M>0}
infinitesimal
infinity
order the speed of variable
to infinitesimal
continuity limΔx0Δy=0\lim\limits_{\Delta x\to0}\Delta y= 0 When x0U(x0,δ)x_0\in U(x_0,\delta) and f(x0)f(x_0) exists, limxx0f(x)\lim\limits_{x\to x_0}f(x) exists and f(x0)=limxx0f(x)f(x_0) = \lim\limits_{x\to x_0}f(x).
discontinuity point
derivative
one-sided derivative
inexplicit function
(accurate)derivative AΔx+ο(Δx)A\Delta x+\omicron(\Delta x)
(approximate)derivative f(x)dxf'(x)dx
approxiamate
operation
f(x)f(x0)(xx0)+f(x0)f(x)\approx f'(x_0)(x-x_0)+f(x_0)
error term R(x)R(x)
Peano term
Lagrange term
point of inflection f(x)=0:f+(x)+f(x)=0f''(x)=0:{f''_+(x)+f''_-(x)=0}
integrable f(x)=F(x):xC(a,b)f(x)=F'(x):x\in C(a,b)
integral upper
limit function
Φ(x)=axf(x)dx:\varPhi (x)=\intop^x_af(x)dx:
axba\leqslant x\leqslant b
瑕點
積分元素
積分和
積分變量
積分上限
積分下限
積分區間
被積表達式

Theorems & Formula

Squeeze Theorem
夾逼定理


φ(x)f(x)ψ(x):xU˚(x0,δ),\varphi(x)\leqslant f(x)\leqslant\psi(x):x\in \mathring{U}(x_0,\delta),

limxx0φ(x)=limxx0ψ(x)=A;\lim\limits_{x\to x_0}\varphi(x)=\lim\limits_{x\to x_0}\psi(x)=A;

limxx0f(x)=A\therefore \lim\limits_{x\to x_0}f(x)=A

\blacksquare

同濟大學數學系,高等教育出版社,《高等數學(第七版 上冊)》P46~P47,ISBN 978-7-04-039663-8

Zero Point Theorem & Intermediate Value Theorem
零點存在定理 & 介值定理

  • Zero Point Theorem
    零點存在定理

y=f(x):xC[a,b],f(a)f(b)<0;y=f(x):x\in \text{C}[a,b],f(a)\cdot f(b)<0;

f(ξ)=0:ξ[a,b]\therefore f(\xi)=0:\xi\in[a,b]

\blacksquare

  • Intermediate Value Theorem
    介值定理

y=f(x):xC[a,b],{f(a)=Af(b)=B;y=f(x):x\in \text{C}[a,b], \begin{cases} f(a)=A \\f(b)=B \end{cases};

f(ξ)=C:ξ[a,b],ACB\therefore f(\xi)=C:\xi\in[a,b],A\leqslant C\leqslant B

\blacksquare

  • Deduction

y=f(x):xC[a,b],{fmax(x)=Mfmin(x)=m;y=f(x):x\in \text{C}[a,b],\begin{cases} f_{max}(x)=M \\f_{min}(x)=m \end{cases};
Rf=[m,M]\therefore\text{R}_f=[m,M]

\blacksquare

同濟大學數學系,高等教育出版社,《高等數學(第七版 上冊)》P68,ISBN 978-7-04-039663-8

Leibniz Formula
萊布尼茲公式

(uv)(n)=k=0n(nk)unkvk(uv)^{(n)}=\displaystyle\sum^n_{k=0} \begin{pmatrix}n\\k \end{pmatrix} u^{n-k}v^k

同濟大學數學系,高等教育出版社,《高等數學(第七版 上冊)》P99,ISBN 978-7-04-039663-8

Fermat Theorem
費馬引理

Roller Mean Value Theorem

Lagrange Mean Value Theorem

Cauchy Mean Value Theorem

L’Hopital’s Rule

The Origin Function Existing Theorem

The Fundemental Theorem (Newton-Leibniz Formula)


Function

Types

Diverse functions can be divided according to various standards, yet still some extremely specialized and significant ones which have been studied of sophistication worth command, for their fundamental properties.

Basic Primary Function

There are 6 basic primary functions in total with their derivatives, differentials and integrals ready to employ anywhere and anytime.

  1. constant function
    f(x)=C:CRf(x)=C:C\in R

  2. power function
    f(x)=xn:nRf(x)=x^n:n\in R

  3. exponential function

  • ordinary state
    f(x)=ax:aRf(x)=a^x:a\in R
  • natural constant state
    f(x)=exf(x)=e^x
  1. logarithmic function
  • ordinary state
    f(x)=logax:aRf(x)=\log_a x:a\in R
  • natural constant state
    f(x)=lnxf(x)=\ln x
  • decuple state
    f(x)=lgxf(x)=\lg x
  1. trigonometric functions
  • sine f(x)=sinxf(x)=\sin x
  • tangent f(x)=tanxf(x)=\tan x
  • secant f(x)=secxf(x)=\sec x
  • cosine f(x)=cosxf(x)=\cos x
  • cotangent f(x)=cotxf(x)=\cot x
  • cosecant f(x)=cscxf(x)=\csc x
  1. inverse trigonometric functions
  • arcsine f(x)=arcsinxf(x)=\arcsin x
    illustration:在這裏插入圖片描述
  • arc cosine f(x)=arccosxf(x)=\arccos x
    illustration:


  • arctangent f(x)=arctanxf(x)=\arctan x
    illustration:在這裏插入圖片描述

Hyperbolic Trigonometric Functions


  • hyperbolic sine
    f(x)=shx=exex2f(x)=\sh x=\frac{\text{e}^x-\text{e}^{-x}}{2}
    illustration:在這裏插入圖片描述



  • hyperbolic cosine
    f(x)=chx=ex+ex2f(x)=\ch x=\frac{\text{e}^x+\text{e}^{-x}}{2}
    illustration:在這裏插入圖片描述

  • hyperbolic tangent
    f(x)=thx=exexex+exf(x)=\th x=\frac{\text{e}^x-\text{e}^{-x}}{\text{e}^x+\text{e}^{-x}}
    illustration:在這裏插入圖片描述

Inverse Hyperbolic Trigonometric Functions


  • inverse hyperbolic sine
    f(x)=arsh x=ln(x+x2+1)f(x)=\text{arsh}\ x=\ln\Big(x+\sqrt{x^2+1}\Big)
    illustration:在這裏插入圖片描述


  • inverse hyperbolic cosine
    f(x)=arch x=ln(x+x21)f(x)=\text{arch}\ x=\ln\Big(x+\sqrt{x^2-1}\Big)
    illustration:在這裏插入圖片描述



  • inverse hyperbolic tangent
    f(x)=arth x=12ln1+x1xf(x)=\text{arth}\ x=\frac{1}{2}\ln\frac{1+x}{1-x}
    illustration:在這裏插入圖片描述

Limit

Substitution of Equivalent Infinitesimal

  • xsinxarcsinxtanxarctanxln(1+x)ex1x \sim \sin x \sim \arcsin x\sim \tan x\sim \arctan x\sim\ln(1+x)\sim\text{e}^x-1
  • 1cosxx221-\cos x\sim\frac{x^2}{2}
  • 1+xn1xn\sqrt[n]{1+x}-1\sim\frac{x}{n}
  • ax1xlnaa^x-1\sim x\ln a
  • (1+x)m1mx(1+x)^m-1\sim mx
  • tanxsinxx32\tan x-\sin x\sim\frac{x^3}{2}

Major Limits

limx0sinxx=1\lim\limits_{x\to0}\frac{\sin x}{x}=1

limx(1+1x)x=e\lim\limits_{x\to\infin}(1+\frac{1}{x})^x=e

Continuity

Discontinuity Point

Llimit and Rlimit exist
else
Llimit equivalent to Rlimit
else
limit equivalent to Infinite
infinitely oscillating limit
Discontinuity Point
The First Class
The Seconde Class
Removable Discontinuity Point
Jump Discontinuity Point
Infinite Discontinuity Point
Oscillating Discontinuity Point
TYPE DEFINATION LEFT LIMIT & RIGHT LIMIT
Jump
Discontinuity Point
Defined f+(x)f(x)f_+(x)\neq f_-(x)
Removable
Discontinuity Point
Defined f+(x)=f(x)f_+(x)=f_-(x)
Infinite
Discontinuity Point
NOT Defined limxx0f(x)=\lim\limits_{x\to x_0} f(x)=\infty
Oscillating
Discontinuity Point
NOT Defined ~
Discontinuity Point of
the First Class
Defined
Discontinuity Point of
the Second Class
NOT Defined

Derivative & Differential

Method

Basic Derivative and Differential Formula

Warning: differential employed for its transformation with ease to derivative as the following.
d(f(x))dx=f(x)dxdx=f(x)\frac{\text{d}\big(f(x)\big)}{\text{d}x}=\frac{f'(x)\cdot \text{d}x}{\text{d}x}=f'(x)

  • constant differential
    d(C)=0\text{d}(C)=0
  • power differential
    d(xa)=axa1dx\text{d}(x^a)=a\cdot x^{a-1}\text{d}x
  • exponential differential
    d(ax)=axlnadx\text{d}(a^x)=a^x\cdot \ln a\text{d}x
    d(ex)=exdx\text{d}(\text{e}^x)=\text{e}^x\text{d}x
  • logarithm differential
    d(logax)=dxxlna\text{d}(\log _ax)=\frac{\text{d}x}{x\cdot \ln a}
    d(lnx)=1x\text{d}(\ln x)=\frac{1}{x}
  • trigonometric differentials
    d(sinx)=cosxdx\text{d}(\sin x)=\cos x\text{d}x
    d(cosx)=sinxdx\text{d}(\cos x)=-\sin x\text{d}x
    d(tanx)=sec2xdx\text{d}(\tan x)=\sec ^2x\text{d}x
    d(cotx)=csc2xdx\text{d}(\cot x)=-\csc ^2x\text{d}x
    d(cscx)=cotxcscxdx\text{d}(\csc x)=\cot x\cdot\csc x\text{d}x
    d(secx)=tanxsecxdx\text{d}(\sec x)=-\tan x\cdot\sec x\text{d}x
  • inverse trigonometric differentials
    d(arcsinx)=dx1x2\text{d}(\arcsin x)=\frac{\text{d}x}{\sqrt{1-x^2}}
    d(arccosx)=dx1x2\text{d}(\arccos x)=-\frac{\text{d}x}{\sqrt{1-x^2}}
    d(arctanx)=dx1+x2\text{d}(\arctan x)=\frac{\text{d}x}{1+x^2}

Characteristics of differential

  • additive
    d(u±v)=du±dv\text{d}(u\pm v)=\text{d}u\pm \text{d}v
  • multiplicative
    d(uv)=vdu+udv\text{d}(u\cdot v)=v\text{d}u+u\text{d}v
    d(uv)=d(u1v)=1vduuv2dv=vduudvv2\text{d}\bigg(\frac{u}{v}\bigg)=\text{d}(u\cdot \frac{1}{v})=\frac{1}{v}\text{d}u-\frac{u}{v^2}\text{d}v=\frac{v\text{d}u-u\text{d}v}{v^2}
  • scalar multipliable
    (ax)=adx:aR\text(a\cdot x)=a\cdot\text{d}x:a\in R

Characteristics of derivative

  • additive
    (f(x)±g(x))=f(x)±g(x)\big( f(x)\pm g(x)\big)'=f'(x)\pm g'(x)
  • multiplicative
    (f(x)g(x))=f(x)g(x)+f(x)g(x)\big( f(x)\cdotp g(x)\big)=f'(x)\cdotp g(x)+f(x)\cdotp g'(x)
    (f(x)g(x))=(f(x)1g(x))=f(x)1g(x)f(x)g(x)g2(x)=f(x)g(x)f(x)g(x)g2(x)\Bigg(\frac{f(x)}{g(x)}\Bigg)'=\big( f(x)\cdotp \frac{1}{g(x)}\big)'=f'(x)\cdotp \frac{1}{g(x)}-f(x)\cdotp \frac{g'(x)}{g^2(x)}=\frac{f'(x)\cdotp g(x)-f(x)\cdotp g'(x)}{g^2(x)}
  • scalar multiplication
    (af(x))=af(x):aR\big(a\cdot f(x)\big)'=a\cdot f'(x):a\in R

Advanced Derivative & Differential Formula

Warning: derivative employed for appropriate simplification, and it could be transformed with ease to differential as the following.

d(f(x))=f(x)dx\text{d}\big(f(x)\big)=f'(x)\cdot \text{d}x

  • (xex)=(x+1)ex(x\text{e}^x)'=(x+1)\text{e}^x
  • (xlnx)=1+lnx(x\ln x)'=1+\ln x

Application

Major Estimation of Differential

  • (1+x)a1+ax(1+x)^a \approx 1+ax
  • sinxx\sin x \approx x (radian xx)
  • tanxx\tan x \approx x (radian xx)
  • ex1+x\text{e}^x\approx 1+x
  • ln(1+x)x\ln (1+x)\approx x

The Mean Value Theorem

Roller Mean Value Theorem

羅爾中值定理
Lagrange Mean Value Theorem

拉格朗日中值定理
Cauchy Mean Value Theorem

柯西中值定理
Taylor Mean Value Theorem

泰勒中值定理

Integral

Definition of Infinite Integral

f(x)dx=F(x)+C\int f(x)\text{d}x=F(x)+C

The equation above matters under the following conditions:

  • F(x)=f(x)F'(x)=f(x)

which is to say,

Definition of Definite Integral

abf(x)dx=i=1nSi=i=1nf(ξi)Δxi\int _a^bf(x)\text{d}x=\sum_{i=1}^{n}S_i=\sum_{i=1}^{n}f(\xi_i)\Delta x_i

Major Trigonometric Substitution

  • sin2x+cos2x=1\sin^2 x+\cos^2 x=1
  • tan2x+1=sec2x\tan^2 x+1=\sec^2 x
  • (tanx)=sec2x(\tan x)'=\sec^2 x

Method

Basic Integral Formula

Warning: The following integral formulas are divided according to the left value.

  • constant function
    0dx=C\int 0\text{d}x=C
  • power function
    xadx=xa+1a+1+C\int x^a\text{d}x=\frac{x^{a+1}}{a+1}+C
  • exponential function
    axdx=axlna+C\int {a^x} \text{d}x=\frac{a^x}{\ln a}+C
    exdx=ex+C\int {\text{e}^x} \text{d}x=\text{e}^x+C
  • logarithm function (natural constant state)
    1xdx=lnx+C\int \frac{1}{x}\text{d}x=\ln \vert x\vert+C
  • trigonometric functions
    cosxdx=sinx+C\int \cos x\text{d}x=\sin x+C
    sinxdx=cosx+C\int \sin x\text{d}x=-\cos x +C
    sec2xdx=tanx+C\int \sec ^2x\text{d}x=\tan x+C
    csc2xdx=cotx+C\int \csc ^2x\text{d}x=-\cot x+C
    cscxcotxdx=cscx+C\int \csc x\cot x\text{d}x=\csc x+C
    secxtanxdx=secx+C\int \sec x\tan x\text{d}x=-\sec x+C
  • inverse trigonometric functions
    dx1x2=arcsinx+C=arccosx+C\int \frac{\text{d}x}{\sqrt{1-x^2}}=\arcsin x+C=-\arccos x+C
    dxa2x2=d(xa)1(xa)2=arcsinxa+C=arccosxa+C\int \frac{\text{d}x}{\sqrt{a^2-x^2}}=\int \frac{\text{d}\big(\frac{x}{a}\big)}{\sqrt{1-\big(\frac{x}{a}\big)^2}}=\arcsin\frac{x}{a}+C=-\arccos\frac{x}{a}+C
    dx1+x2=arctanx+C\int \frac{\text{d}x}{1+x^2}=\arctan x+C
    dxa2+x2=1ad(xa)1+(xa)2=1aarctanx+C\int \frac{\text{d}x}{a^2+x^2}=\frac{1}{a}\int \frac{{\text{d}\big(\frac{x}{a}\big)}}{1+\big(\frac{x}{a}\big)^2}=\frac{1}{a}\arctan x+C

Characteristics of Integral


Substitution of the First Class


f(x)dxu=φ(x)f(φ1(u))φ(x)dxφ(x)=1φ(x)g(u)du\int f(x)\text{d}x\xrightarrow{u=\varphi(x)}\int f(\varphi ^{-1}(u))\cdot\frac{\varphi'(x)\text{d}x}{\varphi'(x)}=\frac{1}{\varphi '(x)}\int g(u)\text{d}u


abf(x)dxα=φ(a),β=φ(b)u=φ(x)(x=φ1(u))αβf(φ1(u))φ(x)dxφ(x)=1φ(x)αβg(u)du\int_a^b f(x)\text{d}x\xrightarrow[\alpha=\varphi(a),\beta=\varphi(b)]{u=\varphi(x)\big(x=\varphi^{-1}(u)\big)}\int_{\alpha}^{\beta} f(\varphi ^{-1}(u))\cdot\frac{\varphi'(x)\text{d}x}{\varphi'(x)}=\frac{1}{\varphi '(x)}\int_{\alpha}^{\beta} g(u)\text{d}u


Substitution of the Second Class


f(x)dxx=ψ(t)f(ψ(t))d(ψ(t))=ψ(t)g(t)dt\int f(x)\text{d}x\xrightarrow{x=\psi(t)}\int f\big(\psi(t)\big)\text{d}\big(\psi(t)\big)=\psi'(t)\int g(t)\text{d}t


κζf(x)dxκ=ψ(k),ζ=ψ(l)(k=ψ1(κ),l=ψ1(ζ))x=ψ(t)klf(ψ(t))d(ψ(t))=ψ(t)klg(t)dt\int_{\kappa}^{\zeta} f(x)\text{d}x\xrightarrow[\kappa=\psi(k),\zeta=\psi(l) \big(k=\psi^{-1}(\kappa),l=\psi^{-1}(\zeta)\big)]{x=\psi(t)}\int_{k}^{l} f\big(\psi(t)\big)\text{d}\big(\psi(t)\big)=\psi'(t)\int_{k}^{l} g(t)\text{d}t


* Indetermined Coefficient for Fraction

Separation of Multiplicative Integral


udv=uv+vdu\int u\text{d}v=uv+\int v\text{d}u


Advanced Integral Formula


  • xdx=x12dx=2332x12dx=23(x32)dx=23x32dx+C\int\sqrt x\text{d}x=\int x^{\frac{1}{2}}\text{d}x=\frac{2}{3}\int \frac{3}{2}x^{\frac{1}{2}}\text{d}x=\frac{2}{3}\int (x^{\frac{3}{2}})'\text{d}x=\frac{2}{3}x^{\frac{3}{2}}\text{d} x+C

  • dxx=x12dx=212x12=2(x12)dx=2x12dx+C\int\frac{\text{d} x}{\sqrt x}=\int x^{-\frac{1}{2}}\text{d}x=2\int \frac{1}{2}x^{-\frac{1}{2}}=2\int(x^{\frac{1}{2}})'\text{d}x=2x^{\frac{1}{2}}\text{d}x+C

  • tanxdx=sinxcosxdx=d(cosx)cosx=lncosx+C\int \tan x\text{d}x=\int \frac{\sin x}{\cos x}\text{d}x=\int -\frac{\text{d}(\cos x)}{\cos x}=-\ln\vert\cos x\vert+C

  • cotxdx=cosxsinxdx=d(sinx)sinx=lnsinx+C\int \cot x\text{d}x=\int \frac{\cos x}{\sin x}\text{d}x=\int \frac{\text{d}(\sin x)}{\sin x}=\ln \vert\sin x\vert+C

  • dx1x2=12(11x+11+x)dx=12(d(1x)1x+d(1+x)1+x)=12(ln(1x)+ln(1+x))+C=12ln1+x1x+C\int \frac{\text{d}x}{1-x^2}=\int\frac{1}{2}\Bigg(\frac{1}{1-x}+\frac{1}{1+x}\Bigg)\text{d}x=\frac{1}{2}\Bigg(\int-\frac{\text{d}(1-x)}{1-x}+\int\frac{\text{d}(1+x)}{1+x}\Bigg)=\frac{1}{2}\Big(-\ln(1-x)+\ln(1+x)\Big)+C=\frac{1}{2}\ln\vert\frac{1+x}{1-x}\vert+C

  • dxa2x2=1ad(xa)1(xa)2=1a12(11xa+11+xa)d(xa)=12a(d(xa)1xa+d(xa)1+xa)=12a(d(1xa)1xa+d(1+xa)1+xa)=12a(ln1xa+ln1+xa)+C=12aln1+xa1xa+C=12alna+xax+C\int \frac{\text{d}x}{a^2-x^2}=\frac{1}{a}\int\frac{\text{d}\big(\frac{x}{a}\big)}{1-\big(\frac{x}{a}\big)^2}=\frac{1}{a}\int\frac{1}{2}\Bigg(\frac{1}{1-\frac{x}{a}}+\frac{1}{1+\frac{x}{a}}\Bigg)\text{d}\Bigg(\frac{x}{a}\Bigg)=\frac{1}{2a}\Bigg(\int\frac{\text{d}\big(\frac{x}{a}\big)}{1-\frac{x}{a}}+\int\frac{\text{d}\big(\frac{x}{a}\big)}{1+\frac{x}{a}}\Bigg)=\frac{1}{2a}\Bigg(\int-\frac{\text{d}\big(1-\frac{x}{a}\big)}{1-\frac{x}{a}}+\int\frac{\text{d}\big(1+\frac{x}{a}\big)}{1+\frac{x}{a}}\Bigg)=\frac{1}{2a}\Bigg(-\ln\vert 1-\frac{x}{a}\vert+\ln\vert 1+\frac{x}{a}\vert\Bigg)+C=\frac{1}{2a}\ln\vert\frac{1+\frac{x}{a}}{1-\frac{x}{a}}\vert+C=\frac{1}{2a}\ln\vert\frac{a+x}{a-x}\vert+C

  • secxdx=lnsecx+tanx+C\int \sec x\text{d}x=\int \ln\vert\sec x+\tan x\vert +C

  • cscxdx=lncscxcotx+C\int \csc x\text{d}x=\int \ln\vert\csc x-\cot x\vert +C

  • dxx2±a2=1alnx+x2+a2+C\int \frac{\text{d}x}{\sqrt{x^2\pm a^2}}=\frac{1}{a}\ln\vert x+\sqrt{x^2+a^2}\vert +C

  • xexdx=(x1)ex+C\int x\text{e}^x\text{d}x=(x-1)\text{e}^x+C

  • xexdx=(x+1)ex+C\int x\text{e}^{-x}\text{d}x=-(x+1)\text{e}^x+C

  • sinxexdx=12(sinxcosx)ex+C\int \sin x\text{e}^x\text{d}x=\frac{1}{2}({\sin x-\cos x})\text{e}^x+C

  • In=xnexIn1:In=xnexdx,I1=xexdx=(x1)ex+CI_n=x^n\text{e}^x-I_{n-1}:I_n=\int x^n\text{e}^x\text{d}x,I_1=\int x\text{e}^x\text{d}x=(x-1)\text{e}^x+C

  • lnxdx=xlnxx+C\int \ln x\text{d}x=x\ln x-x+C

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章