HOME CREDIT DEFAULT RISK COMPETITION

https://www.kaggle.com/c/home-credit-default-risk

1.數據介紹

數據由Home Credit提供,該服務致力於向無銀行賬戶的人羣提供信貸(貸款)。預測客戶是否償還貸款或遇到困難是一項重要的業務需求,Home Credit將在Kaggle上舉辦此類競賽,以瞭解機器學習社區可以開展哪些模式以幫助他們完成此任務。
數據源:
application_train / application_test:主要的培訓和測試數據以及關於Home Credit每個貸款申請的信息。每筆貸款都有自己的行,並由功能SK_ID_CURR標識。培訓申請數據附帶TARGET表示0:貸款已還清或1:貸款未還清。

bureau:有關客戶之前來自其他金融機構的信貸的數據。以前的每一筆信貸都有自己的分行,但申請數據中的一筆貸款可能有多筆先前信貸。

bureau_balance:關於主管局以前信用的月度數據。每一行都是上一個信用的一個月,並且一個先前的信用可以有多個行,每個信用額度的每個月有一個行。

previous_application:之前在申請數據中擁有貸款的客戶的Home Credit貸款申請。申請數據中的每個當前貸款都可以有多個以前的貸款。每個以前的應用程序都有一行,並由功能SK_ID_PREV標識。

POS_CASH_BALANCE:關於客戶以前的銷售點或現金貸款與住房貸款有關的每月數據。每一行都是前一個銷售點或現金貸款的一個月,以前的一筆貸款可以有多行。

credit_card_balance:有關之前的信用卡客戶與Home Credit有關的每月數據。每行都是信用卡餘額的一個月,一張信用卡可以有多行。

installments_payment:Home Credit以前貸款的付款記錄。每筆付款都有一行,每筆未付款都有一行。
在這裏插入圖片描述

2.數據探索

2.1 檢查數據分佈

app_train['TARGET'].value_counts()

在這裏插入圖片描述
app_train[‘TARGET’].astype(int).plot.hist();
在這裏插入圖片描述
可見這是一個類別不平衡問題
2.2 檢查缺失值

# Function to calculate missing values by column# Funct 
def missing_values_table(df):
        # Total missing values
        mis_val = df.isnull().sum()
        
        # Percentage of missing values
        mis_val_percent = 100 * df.isnull().sum() / len(df)
        
        # Make a table with the results
        mis_val_table = pd.concat([mis_val, mis_val_percent], axis=1)
        
        # Rename the columns
        mis_val_table_ren_columns = mis_val_table.rename(
        columns = {0 : 'Missing Values', 1 : '% of Total Values'})
        
        # Sort the table by percentage of missing descending
        mis_val_table_ren_columns = mis_val_table_ren_columns[
            mis_val_table_ren_columns.iloc[:,1] != 0].sort_values(
        '% of Total Values', ascending=False).round(1)
        
        # Print some summary information
        print ("Your selected dataframe has " + str(df.shape[1]) + " columns.\n"      
            "There are " + str(mis_val_table_ren_columns.shape[0]) +
              " columns that have missing values.")
        
        # Return the dataframe with missing information
        return mis_val_table_ren_columns
missing_values = missing_values_table(app_train)
missing_values.head(20)

Your selected dataframe has 122 columns.
There are 67 columns that have missing values.
在這裏插入圖片描述
當需要建立我們的模型時,我們將不得不填寫這些缺失值。 若使用XGBoost等模型,可以處理缺失值而不需要插補。 另一種選擇是刪除缺失值比例較高的列,但如果這些列對我們的模型有幫助,則不可能提前知道。 因此,我們現在將保留所有列。
2.3查看列類型

# Number of each type of column
app_train.dtypes.value_counts()

在這裏插入圖片描述

查看每個特徵中唯一條目的數量

# Number of unique classes in each object column
app_train.select_dtypes('object').apply(pd.Series.nunique, axis = 0)

在這裏插入圖片描述

2.6 labelEncode和onehotEncode
  對於有很多類的分類變量,單熱編碼是最安全的方法,因爲它不會對類別強加任意值。 單熱編碼唯一的缺點是數據的維數會隨着分類變量的分類而爆炸。 爲了解決這個問題,我們可以執行一個onehot編碼,然後使用 PCA 或其他降維方法,以減少維數。
  對於具有2個唯一類別的任何分類變量(dtype ==對象),我們將使用標籤編碼,對於具有多於2個唯一類別的任何分類變量,我們將使用單熱編碼

3.數據分析

查看特徵DAYS_EMPLOYED

app_train['DAYS_EMPLOYED'].describe()

在這裏插入圖片描述

app_train['DAYS_EMPLOYED'].plot.hist(title = 'Days Employment Histogram');
plt.xlabel('Days Employment');

在這裏插入圖片描述
  可見特徵DAYS_EMPLOYED中出現了異常值365423
  處理異常情況取決於具體情況,最安全的方法之一就是將異常設置爲缺失值。 異常值似乎有一些重要性,所以我們想告訴模型,如果我們確實填寫了這些值。
相關性分析

# Find correlations with the target and sort
correlations = app_train.corr()['TARGET'].sort_values()
 
# Display correlations
print('Most Positive Correlations:\n', correlations.tail(15))
print('\nMost Negative Correlations:\n', correlations.head(15))

在這裏插入圖片描述
  由此可見,DAYS_BIRTH是最正相關的,負相關效果較好的特徵是 EXT_SOURCE_1, EXT_SOURCE_2, EXT_SOURCE_3

4.特徵挖掘
基本思路:
1.在各個文件進行merge操作的時候,分別計算各個聚合特徵的[max, min, mean, sum]等各個維度來產生新特徵;
2.分析各個特徵之間的聯繫,嘗試找到與目標相關性較高的新特徵,如:df[‘PAYMENT_RATE’] = df[‘AMT_ANNUITY’] / df[‘AMT_CREDIT’]
3.通過相關性分析找到效果最好的幾個特徵,如DAYS_BIRTH,EXT_SOURCE_1, EXT_SOURCE_2, EXT_SOURCE_3等,通過計算最好的幾個特徵之間的和,差,積,均值等維度來產生新特徵,並分析與目標之間的相關性從而來找到合適的新特徵。

完整代碼

# HOME CREDIT DEFAULT RISK COMPETITION
# Update 16/06/2018:
import numpy as np
import pandas as pd
import gc
import time
from contextlib import contextmanager
from lightgbm import LGBMClassifier
from sklearn.metrics import roc_auc_score, roc_curve
from sklearn.model_selection import KFold, StratifiedKFold
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

@contextmanager
def timer(title):
    t0 = time.time()
    yield
    print("{} - done in {:.0f}s".format(title, time.time() - t0))

# One-hot encoding for categorical columns with get_dummies
def one_hot_encoder(df, nan_as_category = True):
    original_columns = list(df.columns)
    categorical_columns = [col for col in df.columns if df[col].dtype == 'object']
    df = pd.get_dummies(df, columns= categorical_columns, dummy_na= nan_as_category)
    new_columns = [c for c in df.columns if c not in original_columns]
    return df, new_columns

# Preprocess application_train.csv and application_test.csv
def application_train_test(num_rows = None, nan_as_category = False):
    # Read data and merge
    df = pd.read_csv('../input/application_train.csv', nrows= num_rows)
    test_df = pd.read_csv('../input/application_test.csv', nrows= num_rows)
    print("Train samples: {}, test samples: {}".format(len(df), len(test_df)))
    df = df.append(test_df).reset_index()
    # Optional: Remove 4 applications with XNA CODE_GENDER (train set)
    df = df[df['CODE_GENDER'] != 'XNA']
    
    # Categorical features with Binary encode (0 or 1; two categories)
    for bin_feature in ['CODE_GENDER', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY']:
        df[bin_feature], uniques = pd.factorize(df[bin_feature])
    # Categorical features with One-Hot encode
    df, cat_cols = one_hot_encoder(df, nan_as_category)
    
    # NaN values for DAYS_EMPLOYED: 365.243 -> nan
    df['DAYS_EMPLOYED'].replace(365243, np.nan, inplace= True)
    # Some simple new features (percentages)
    df['DAYS_EMPLOYED_PERC'] = df['DAYS_EMPLOYED'] / df['DAYS_BIRTH']
    df['INCOME_CREDIT_PERC'] = df['AMT_INCOME_TOTAL'] / df['AMT_CREDIT']
    df['INCOME_PER_PERSON'] = df['AMT_INCOME_TOTAL'] / df['CNT_FAM_MEMBERS']
    df['ANNUITY_INCOME_PERC'] = df['AMT_ANNUITY'] / df['AMT_INCOME_TOTAL']
    df['PAYMENT_RATE'] = df['AMT_ANNUITY'] / df['AMT_CREDIT']
    del test_df
    gc.collect()
    return df

# Preprocess bureau.csv and bureau_balance.csv
def bureau_and_balance(num_rows = None, nan_as_category = True):
    bureau = pd.read_csv('../input/bureau.csv', nrows = num_rows)
    bb = pd.read_csv('../input/bureau_balance.csv', nrows = num_rows)
    bb, bb_cat = one_hot_encoder(bb, nan_as_category)
    bureau, bureau_cat = one_hot_encoder(bureau, nan_as_category)
    
    # Bureau balance: Perform aggregations and merge with bureau.csv
    bb_aggregations = {'MONTHS_BALANCE': ['min', 'max', 'size']}
    for col in bb_cat:
        bb_aggregations[col] = ['mean']
    bb_agg = bb.groupby('SK_ID_BUREAU').agg(bb_aggregations)
    bb_agg.columns = pd.Index([e[0] + "_" + e[1].upper() for e in bb_agg.columns.tolist()])
    bureau = bureau.join(bb_agg, how='left', on='SK_ID_BUREAU')
    bureau.drop(['SK_ID_BUREAU'], axis=1, inplace= True)
    del bb, bb_agg
    gc.collect()
    
    # Bureau and bureau_balance numeric features
    num_aggregations = {
        'DAYS_CREDIT': ['min', 'max', 'mean', 'var'],
        'DAYS_CREDIT_ENDDATE': ['min', 'max', 'mean'],
        'DAYS_CREDIT_UPDATE': ['mean'],
        'CREDIT_DAY_OVERDUE': ['max', 'mean'],
        'AMT_CREDIT_MAX_OVERDUE': ['mean'],
        'AMT_CREDIT_SUM': ['max', 'mean', 'sum'],
        'AMT_CREDIT_SUM_DEBT': ['max', 'mean', 'sum'],
        'AMT_CREDIT_SUM_OVERDUE': ['mean'],
        'AMT_CREDIT_SUM_LIMIT': ['mean', 'sum'],
        'AMT_ANNUITY': ['max', 'mean'],
        'CNT_CREDIT_PROLONG': ['sum'],
        'MONTHS_BALANCE_MIN': ['min'],
        'MONTHS_BALANCE_MAX': ['max'],
        'MONTHS_BALANCE_SIZE': ['mean', 'sum']
    }
    # Bureau and bureau_balance categorical features
    cat_aggregations = {}
    for cat in bureau_cat: cat_aggregations[cat] = ['mean']
    for cat in bb_cat: cat_aggregations[cat + "_MEAN"] = ['mean']
    
    bureau_agg = bureau.groupby('SK_ID_CURR').agg({**num_aggregations, **cat_aggregations})
    bureau_agg.columns = pd.Index(['BURO_' + e[0] + "_" + e[1].upper() for e in bureau_agg.columns.tolist()])
    # Bureau: Active credits - using only numerical aggregations
    active = bureau[bureau['CREDIT_ACTIVE_Active'] == 1]
    active_agg = active.groupby('SK_ID_CURR').agg(num_aggregations)
    active_agg.columns = pd.Index(['ACTIVE_' + e[0] + "_" + e[1].upper() for e in active_agg.columns.tolist()])
    bureau_agg = bureau_agg.join(active_agg, how='left', on='SK_ID_CURR')
    del active, active_agg
    gc.collect()
    # Bureau: Closed credits - using only numerical aggregations
    closed = bureau[bureau['CREDIT_ACTIVE_Closed'] == 1]
    closed_agg = closed.groupby('SK_ID_CURR').agg(num_aggregations)
    closed_agg.columns = pd.Index(['CLOSED_' + e[0] + "_" + e[1].upper() for e in closed_agg.columns.tolist()])
    bureau_agg = bureau_agg.join(closed_agg, how='left', on='SK_ID_CURR')
    del closed, closed_agg, bureau
    gc.collect()
    return bureau_agg

# Preprocess previous_applications.csv
def previous_applications(num_rows = None, nan_as_category = True):
    prev = pd.read_csv('../input/previous_application.csv', nrows = num_rows)
    prev, cat_cols = one_hot_encoder(prev, nan_as_category= True)
    # Days 365.243 values -> nan
    prev['DAYS_FIRST_DRAWING'].replace(365243, np.nan, inplace= True)
    prev['DAYS_FIRST_DUE'].replace(365243, np.nan, inplace= True)
    prev['DAYS_LAST_DUE_1ST_VERSION'].replace(365243, np.nan, inplace= True)
    prev['DAYS_LAST_DUE'].replace(365243, np.nan, inplace= True)
    prev['DAYS_TERMINATION'].replace(365243, np.nan, inplace= True)
    # Add feature: value ask / value received percentage
    prev['APP_CREDIT_PERC'] = prev['AMT_APPLICATION'] / prev['AMT_CREDIT']
    # Previous applications numeric features
    num_aggregations = {
        'AMT_ANNUITY': ['min', 'max', 'mean'],
        'AMT_APPLICATION': ['min', 'max', 'mean'],
        'AMT_CREDIT': ['min', 'max', 'mean'],
        'APP_CREDIT_PERC': ['min', 'max', 'mean', 'var'],
        'AMT_DOWN_PAYMENT': ['min', 'max', 'mean'],
        'AMT_GOODS_PRICE': ['min', 'max', 'mean'],
        'HOUR_APPR_PROCESS_START': ['min', 'max', 'mean'],
        'RATE_DOWN_PAYMENT': ['min', 'max', 'mean'],
        'DAYS_DECISION': ['min', 'max', 'mean'],
        'CNT_PAYMENT': ['mean', 'sum'],
    }
    # Previous applications categorical features
    cat_aggregations = {}
    for cat in cat_cols:
        cat_aggregations[cat] = ['mean']
    
    prev_agg = prev.groupby('SK_ID_CURR').agg({**num_aggregations, **cat_aggregations})
    prev_agg.columns = pd.Index(['PREV_' + e[0] + "_" + e[1].upper() for e in prev_agg.columns.tolist()])
    # Previous Applications: Approved Applications - only numerical features
    approved = prev[prev['NAME_CONTRACT_STATUS_Approved'] == 1]
    approved_agg = approved.groupby('SK_ID_CURR').agg(num_aggregations)
    approved_agg.columns = pd.Index(['APPROVED_' + e[0] + "_" + e[1].upper() for e in approved_agg.columns.tolist()])
    prev_agg = prev_agg.join(approved_agg, how='left', on='SK_ID_CURR')
    # Previous Applications: Refused Applications - only numerical features
    refused = prev[prev['NAME_CONTRACT_STATUS_Refused'] == 1]
    refused_agg = refused.groupby('SK_ID_CURR').agg(num_aggregations)
    refused_agg.columns = pd.Index(['REFUSED_' + e[0] + "_" + e[1].upper() for e in refused_agg.columns.tolist()])
    prev_agg = prev_agg.join(refused_agg, how='left', on='SK_ID_CURR')
    del refused, refused_agg, approved, approved_agg, prev
    gc.collect()
    return prev_agg

# Preprocess POS_CASH_balance.csv
def pos_cash(num_rows = None, nan_as_category = True):
    pos = pd.read_csv('../input/POS_CASH_balance.csv', nrows = num_rows)
    pos, cat_cols = one_hot_encoder(pos, nan_as_category= True)
    # Features
    aggregations = {
        'MONTHS_BALANCE': ['max', 'mean', 'size'],
        'SK_DPD': ['max', 'mean'],
        'SK_DPD_DEF': ['max', 'mean']
    }
    for cat in cat_cols:
        aggregations[cat] = ['mean']
    
    pos_agg = pos.groupby('SK_ID_CURR').agg(aggregations)
    pos_agg.columns = pd.Index(['POS_' + e[0] + "_" + e[1].upper() for e in pos_agg.columns.tolist()])
    # Count pos cash accounts
    pos_agg['POS_COUNT'] = pos.groupby('SK_ID_CURR').size()
    del pos
    gc.collect()
    return pos_agg
    
# Preprocess installments_payments.csv
def installments_payments(num_rows = None, nan_as_category = True):
    ins = pd.read_csv('../input/installments_payments.csv', nrows = num_rows)
    ins, cat_cols = one_hot_encoder(ins, nan_as_category= True)
    # Percentage and difference paid in each installment (amount paid and installment value)
    ins['PAYMENT_PERC'] = ins['AMT_PAYMENT'] / ins['AMT_INSTALMENT']
    ins['PAYMENT_DIFF'] = ins['AMT_INSTALMENT'] - ins['AMT_PAYMENT']
    # Days past due and days before due (no negative values)
    ins['DPD'] = ins['DAYS_ENTRY_PAYMENT'] - ins['DAYS_INSTALMENT']
    ins['DBD'] = ins['DAYS_INSTALMENT'] - ins['DAYS_ENTRY_PAYMENT']
    ins['DPD'] = ins['DPD'].apply(lambda x: x if x > 0 else 0)
    ins['DBD'] = ins['DBD'].apply(lambda x: x if x > 0 else 0)
    # Features: Perform aggregations
    aggregations = {
        'NUM_INSTALMENT_VERSION': ['nunique'],
        'DPD': ['max', 'mean', 'sum'],
        'DBD': ['max', 'mean', 'sum'],
        'PAYMENT_PERC': ['max', 'mean', 'sum', 'var'],
        'PAYMENT_DIFF': ['max', 'mean', 'sum', 'var'],
        'AMT_INSTALMENT': ['max', 'mean', 'sum'],
        'AMT_PAYMENT': ['min', 'max', 'mean', 'sum'],
        'DAYS_ENTRY_PAYMENT': ['max', 'mean', 'sum']
    }
    for cat in cat_cols:
        aggregations[cat] = ['mean']
    ins_agg = ins.groupby('SK_ID_CURR').agg(aggregations)
    ins_agg.columns = pd.Index(['INSTAL_' + e[0] + "_" + e[1].upper() for e in ins_agg.columns.tolist()])
    # Count installments accounts
    ins_agg['INSTAL_COUNT'] = ins.groupby('SK_ID_CURR').size()
    del ins
    gc.collect()
    return ins_agg

# Preprocess credit_card_balance.csv
def credit_card_balance(num_rows = None, nan_as_category = True):
    cc = pd.read_csv('../input/credit_card_balance.csv', nrows = num_rows)
    cc, cat_cols = one_hot_encoder(cc, nan_as_category= True)
    # General aggregations
    cc.drop(['SK_ID_PREV'], axis= 1, inplace = True)
    cc_agg = cc.groupby('SK_ID_CURR').agg(['min', 'max', 'mean', 'sum', 'var'])
    cc_agg.columns = pd.Index(['CC_' + e[0] + "_" + e[1].upper() for e in cc_agg.columns.tolist()])
    # Count credit card lines
    cc_agg['CC_COUNT'] = cc.groupby('SK_ID_CURR').size()
    del cc
    gc.collect()
    return cc_agg

# LightGBM GBDT with KFold or Stratified KFold
# Parameters from Tilii kernel: https://www.kaggle.com/tilii7/olivier-lightgbm-parameters-by-bayesian-opt/code
def kfold_lightgbm(df, num_folds, stratified = False, debug= False):
    # Divide in training/validation and test data
    train_df = df[df['TARGET'].notnull()]
    test_df = df[df['TARGET'].isnull()]
    print("Starting LightGBM. Train shape: {}, test shape: {}".format(train_df.shape, test_df.shape))
    del df
    gc.collect()
    # Cross validation model
    if stratified:
        folds = StratifiedKFold(n_splits= num_folds, shuffle=True, random_state=1001)
    else:
        folds = KFold(n_splits= num_folds, shuffle=True, random_state=1001)
    # Create arrays and dataframes to store results
    oof_preds = np.zeros(train_df.shape[0])
    sub_preds = np.zeros(test_df.shape[0])
    feature_importance_df = pd.DataFrame()
    feats = [f for f in train_df.columns if f not in ['TARGET','SK_ID_CURR','SK_ID_BUREAU','SK_ID_PREV','index']]
    
    for n_fold, (train_idx, valid_idx) in enumerate(folds.split(train_df[feats], train_df['TARGET'])):
        train_x, train_y = train_df[feats].iloc[train_idx], train_df['TARGET'].iloc[train_idx]
        valid_x, valid_y = train_df[feats].iloc[valid_idx], train_df['TARGET'].iloc[valid_idx]

        # LightGBM parameters found by Bayesian optimization
        clf = LGBMClassifier(
            nthread=4,
            n_estimators=10000,
            learning_rate=0.02,
            num_leaves=34,
            colsample_bytree=0.9497036,
            subsample=0.8715623,
            max_depth=8,
            reg_alpha=0.041545473,
            reg_lambda=0.0735294,
            min_split_gain=0.0222415,
            min_child_weight=39.3259775,
            silent=-1,
            verbose=-1, )

        clf.fit(train_x, train_y, eval_set=[(train_x, train_y), (valid_x, valid_y)], 
            eval_metric= 'auc', verbose= 200, early_stopping_rounds= 200)

        oof_preds[valid_idx] = clf.predict_proba(valid_x, num_iteration=clf.best_iteration_)[:, 1]
        sub_preds += clf.predict_proba(test_df[feats], num_iteration=clf.best_iteration_)[:, 1] / folds.n_splits

        fold_importance_df = pd.DataFrame()
        fold_importance_df["feature"] = feats
        fold_importance_df["importance"] = clf.feature_importances_
        fold_importance_df["fold"] = n_fold + 1
        feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0)
        print('Fold %2d AUC : %.6f' % (n_fold + 1, roc_auc_score(valid_y, oof_preds[valid_idx])))
        del clf, train_x, train_y, valid_x, valid_y
        gc.collect()

    print('Full AUC score %.6f' % roc_auc_score(train_df['TARGET'], oof_preds))
    # Write submission file and plot feature importance
    if not debug:
        test_df['TARGET'] = sub_preds
        test_df[['SK_ID_CURR', 'TARGET']].to_csv(submission_file_name, index= False)
    display_importances(feature_importance_df)
    return feature_importance_df

# Display/plot feature importance
def display_importances(feature_importance_df_):
    cols = feature_importance_df_[["feature", "importance"]].groupby("feature").mean().sort_values(by="importance", ascending=False)[:40].index
    best_features = feature_importance_df_.loc[feature_importance_df_.feature.isin(cols)]
    plt.figure(figsize=(8, 10))
    sns.barplot(x="importance", y="feature", data=best_features.sort_values(by="importance", ascending=False))
    plt.title('LightGBM Features (avg over folds)')
    plt.tight_layout()
    plt.savefig('lgbm_importances01.png')


def main(debug = False):
    num_rows = 10000 if debug else None
    df = application_train_test(num_rows)
    with timer("Process bureau and bureau_balance"):
        bureau = bureau_and_balance(num_rows)
        print("Bureau df shape:", bureau.shape)
        df = df.join(bureau, how='left', on='SK_ID_CURR')
        del bureau
        gc.collect()
    with timer("Process previous_applications"):
        prev = previous_applications(num_rows)
        print("Previous applications df shape:", prev.shape)
        df = df.join(prev, how='left', on='SK_ID_CURR')
        del prev
        gc.collect()
    with timer("Process POS-CASH balance"):
        pos = pos_cash(num_rows)
        print("Pos-cash balance df shape:", pos.shape)
        df = df.join(pos, how='left', on='SK_ID_CURR')
        del pos
        gc.collect()
    with timer("Process installments payments"):
        ins = installments_payments(num_rows)
        print("Installments payments df shape:", ins.shape)
        df = df.join(ins, how='left', on='SK_ID_CURR')
        del ins
        gc.collect()
    with timer("Process credit card balance"):
        cc = credit_card_balance(num_rows)
        print("Credit card balance df shape:", cc.shape)
        df = df.join(cc, how='left', on='SK_ID_CURR')
        del cc
        gc.collect()
    with timer("Run LightGBM with kfold"):
        feat_importance = kfold_lightgbm(df, num_folds= 10, stratified= False, debug= debug)

if __name__ == "__main__":
    submission_file_name = "submission_kernel02.csv"
    with timer("Full model run"):
        main()

在這裏插入圖片描述

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章