《機器人操作的數學導論》第二章習題之14

《機器人操作的數學導論》第二章習題之14

題目如下

在這裏插入圖片描述

第一問(a)

gSE(3)\forall g \in SE(3),有g=[Rp01]g = \left[ \begin{array} { l l } { R } & { p } \\ { 0 } & { 1 } \end{array} \right]g1=[RTRTp01]g ^ { - 1 } = \left[ \begin{array} { c c } { R ^ { T } } & { - R ^ { T } p } \\ { 0 } & { 1 } \end{array} \right]
則有Adg=[Rp^R0R]\mathrm { Ad } _ { g } = \left[ \begin{array} { c c } { R } & { \widehat { p } R } \\ { 0 } & { R } \end{array} \right]Adg1=[RTRTp^RT0RT]\mathrm { Ad } _ { g^{-1} } = \left[ \begin{array} { c c } { R^T } & { -\widehat { R^Tp } R^T } \\ { 0 } & { R ^T} \end{array} \right]
其中RTp^=(RT)p^(RT)T=RTp^R\widehat { R^Tp }=(R^T)\hat{p}(R^T)^T=R^T\hat{p}R
故:
Adg1=[RTRTp^0RT] \mathrm { Ad } _ { g^{-1} } = \left[ \begin{array} { c c } { R^T } & { -R^T\hat{p}} \\ { 0 } & { R ^T} \end{array} \right]
而:
AdgAdg1=[Rp^R0R][RTRTp^0RT]=I Ad_g\cdot Ad_{g^{-1}}= \left[ \begin{array} { c c } { R } & { \widehat { p } R } \\ { 0 } & { R } \end{array} \right]\cdot \left[ \begin{array} { c c } { R^T } & { -R^T\hat{p}} \\ { 0 } & { R ^T} \end{array} \right]=I
所以(Adg)1=Adg1(Ad_g)^{-1}=Ad_{g^{-1}}

第二問(b)

g1,g2SE(3),g1=[R1p101]g2=[R2p201]\forall g_1,g_2\in SE(3),令 g_1=\left[ \begin{array} { cc } { R_1 } & { p_1 } \\ { 0 } & { 1 } \end{array} \right],g_{2}=\left[ \begin{array} {cc} { R_2 } & { p_2} \\ { 0 } & { 1 } \end{array} \right]
g1g2=[R1R2R1p2+p101] g_1g_2=\left[ \begin{array} { cc} { R_1R_2 } & {R_1p_2 + p_1 } \\ { 0 } & { 1 } \end{array} \right]
對其進行adjoint伴隨變換,故:
Adg1g2=[R1R2R1p2+p1^R1R20R1R2]=[R1R2R1p2+p1^R1R20R1R2] \begin{aligned} Ad_{g_1g_2}&=\left[ \begin{array} { cc} { R_1R_2 } & {\widehat{R_1p_2 + p_1}R_1R_2 } \\ { 0 } & { R_1R_2 } \end{array} \right]\\ &=\left[ \begin{array} { cc} { R_1R_2 } & {\widehat{R_1p_2 + p_1}R_1R_2 } \\ { 0 } & { R_1R_2 } \end{array} \right] \end{aligned}
Adg1Adg2=[R1p1^R10R1][R2p2^R20R2]=[R1R2R1p2^R2+p1^R1R20R1R2] \begin{aligned} Ad_{g_1}Ad_{g_2}&=\left[ \begin{array} { c c } { R_1 } & { \hat { p_1 } R_1 } \\ { 0 } & { R_1 } \end{array} \right]\cdot\left[ \begin{array} { c c } { R_2 } & { \hat { p_2 } R_2 } \\ { 0 } & { R_2 } \end{array} \right]\\ &=\left[ \begin{array} { c c } { R_1R_2 } & { R_1\hat { p_2 } R_2+ \hat { p_1 }R_1 R_2} \\ { 0 } & { R_1 R_2} \end{array} \right] \end{aligned}
其中R1p2+p1^=R1p2^+p1^=R1p2^R1T+p1^\widehat{R_1p_2 + p_1}=\widehat{R_1p_2 }+\hat{p_1}=R_1\hat{p_2 }R_1^T+\hat{p_1}
RωRT=Rω^\because R\omega R^T=\widehat{R\omega}

故有:
Adg1g2=Adg1Adg2 Ad_{g_1g_2}=Ad_{g_1}Ad_{g_2}
得證

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章