I2C协议简介

本篇是我关于stm32中I2C的学习笔记,大部分参考的是《【野火®】零死角玩转STM32—F103-MINI》以及《STM32中文参考手册_V10》。推荐大家自己下去可以仔细阅读。
由于本篇只是简单介绍I2C的协议,所以关于stm32寄存器的相关介绍就没有写。


  • I2C 通讯协议(Inter-Integrated Circuit)是由 Phiilps 公司开发的,由于它引脚少,硬件 实现简单,可扩展性强,不需要 USART、CAN 等通讯协议的外部收发设备,现在被广泛地使用在系统内多个集成电路(IC)间的通讯。
  • 在计算机科学里,大部分复杂的问题都可以通过分层来简化。如芯片被分为内核层和片上外设;STM32 标准库则是在寄存器与用户代码之间的软件层。对于通讯协议,我们也以分层的方式来理解,最基本的是把它分为物理层和协议层。物理层规定通讯系统中具有机械、电子功能部分的特性,确保原始数据在物理媒体的传输协议层主要规定通讯逻辑,统一收发双方的数据打包、解包标准。

一、I2C 物理层

常见的 I2C 通讯系统
在这里插入图片描述

  • (1) 它是一个支持设备的总线。“总线”指多个设备共用的信号线。在一个 I2C 通讯总线中,可连接多个 I2C 通讯设备,支持多个通讯主机及多个通讯从机。
  • (2) 一个 I2C 总线只使用两条总线线路,一条双向串行数据线(SDA),一条串行时钟线(SCL)。数据线即用来表示数据,时钟线用于数据收发同步。
  • (3) 每个连接到总线的设备都有一个独立的地址,主机可以利用这个地址进行不同设备之间的访问。
  • (4) 总线通过上拉电阻接到电源。当 I2C设备空闲时,会输出高阻态,而当所有设备都空闲,都输出高阻态时,由上拉电阻把总线拉成高电平。 (理解这点很重要)
  • (5) 多个主机同时使用总线时,为了防止数据冲突,会利用仲裁方式决定由哪个设备占用总线。
  • (6) 具有三种传输模式:标准模式传输速率为100kbit/s ,快速模式为 400kbit/s ,高速模式下可达 3.4Mbit/s,但目前大多 I2C 设备尚不支持高速模式。
  • (7) 连接到相同总线的 IC 数量受到总线的最大电容 400pF 限制 。

二、协议层

I2C 的协议定义了通讯的起始和停止信号、数据有效性、响应、仲裁、时钟同步和地址广播等环节

1. I2C 基本读写过程

  • 主机写数据到从机在这里插入图片描述

  • 主机由从机中读数据
    在这里插入图片描述

  • I2C 通讯复合格式
    在这里插入图片描述

这里是引用
在这里插入图片描述

  • 些图表示的是主机和从机通讯时,SDA 线的数据包序列
  • 其中 S 表示由主机的 I2C 接口产生的传输起始信号(S),这时连接到 I2C总线上的所有从机都会接收到这个信号。
  • 起始信号产生后,所有从机就开始等待主机紧接下来广播的从机地址信号(SLAVE ADDRESS)。在I2C 总线上,每个设备的地址都是唯一的,当主机广播的地址与某个设备地址相同时,这个设备就被选中了,没被选中的设备将会忽略之后的数据信号。
  • 根据 I2C 协议,这个从机地址可以是 7 位或 10 位。 在地址位之后,是传输方向的选择位,该位为 0 时,表示后面的数据传输方向是由主机传输至从机,即主机向从机写数据。该位为 1 时,则相反,即主机由从机读数据。
  • 从机接收到匹配的地址后,主机或从机会返回一个应答(ACK)或非应答(NACK)信号,只有接收到应答信号后,主机才能继续发送或接收数据。
  • 写数据
    若配置的方向传输位为“写数据”方向,即第一幅图的情况,广播完地址,接收到应答信号后,主机开始正式向从机传输数据(DATA),数据包的大小为 8 位,主机每发送完一个字节数据,都要等待从机的应答信号(ACK),重复这个过程,可以向从机传输 N 个数据,这个 N 没有大小限制。当数据传输结束时,主机向从机发送一个停止传输信号§,表示不再传输数据。
  • 读数据
    若配置的方向传输位为“读数据”方向,即第二幅图的情况,广播完地址,接收到应答信号后,从机开始向主机返回数据(DATA),数据包大小也为 8 位,从机每发送完一个数据,都会等待主机的应答信号(ACK),重复这个过程,可以返回 N 个数据,这个 N 也没有大小限制。当主机希望停止接收数据时,就向从机返回一个非应答信号(NACK),则从机自动停止数据传输。
  • 读和写数据
    除了基本的读写,I2C 通讯更常用的是复合格式,即第三幅图的情况,该传输过程有两次起始信号(S)。一般在第一次传输中,主机通过 SLAVE_ADDRESS 寻找到从设备后,发送一段“数据”,这段数据通常用于表示从设备内部的寄存器或存储器地址(注意区分它与 SLAVE_ADDRESS 的区别);在第二次的传输中,对该地址的内容进行读或写。也就是说,第一次通讯是告诉从机读写地址,第二次则是读写的实际内容。

2. 通讯的起始和停止信号

前文中提到的起始(S)和停止§信号是两种特殊的状态。当 SCL 线是高电平时 SDA 线从高电平向低电平切换,这个情况表示通讯的起始。当 SCL 是高电平时 SDA线由低电平向高电平切换,表示通讯的停止。起始和停止信号一般由主机产生。

起始和停止信号
在这里插入图片描述

3. 数据有效性

  • I2C 使用 SDA 信号线来传输数据,使用 SCL 信号线进行数据同步。见图 24-6。SDA数据线在 SCL 的每 个时钟周期传输一位数据。传输时,SCL 为高电平的时候 SDA 表示的数据有效,即此时的 SDA 为高电平时表示数据“1”,为低电平时表示数据“0”。当 SCL为低电平时,SDA 的数据无效,一般在这个时候 SDA 进行电平切换,为下一次表示数据做好准备。
  • 每次数据传输都以字节为单位,每次传输的字节数不受限制。
    在这里插入图片描述

4. 地址及数据方向

  • I2C 总线上的每个设备都有自己的独立地址,主机发起通讯时,通过 SDA 信号线发送设备地址(SLAVE_ADDRESS)来查找从机。I2C 协议规定设备地址可以是 7 位或 10 位,实际中 7 位的地址应用比较广泛。紧跟设备地址的一个数据位用来表示数据传输方向,它是数据方向位(R/W)第 8 位或第 11 位。数据方向位为“1”时表示主机由从机读数据,该位为“0”时表示主机向从机写数据。
  • 读数据方向时,主机会释放对 SDA 信号线的控制,由从机控制 SDA 信号线,主机接收信号,写数据方向时,SDA 由主机控制,从机接收信号。
    在这里插入图片描述

5. 响应

  • I2C 的数据和地址传输都带响应。响应包括“应答(ACK)”和“非应答(NACK)”两种信号。作为数据接收端时,当设备(无论主从机)接收到 I2C 传输的一个字节数据或地址后,若希望对方继续发送数据,则需要向对方发送“应答(ACK)”信号,发送方会继续发送下一个数据;若接收端希望结束数据传输,则向对方发送“非应答(NACK)”信号,发送方接收到该信号后会产生一个停止信号,结束信号传输。

  • 传输时主机产生时钟,在第 9 个时钟时,数据发送端会释放 SDA 的控制权,由数据接收端控制SDA,若SDA 为高电平,表示非应答信号(NACK),低电平表示应答信号(ACK)。
    在这里插入图片描述

三、STM32 I2C接口

1.功能框图

在这里插入图片描述

2.发送接受数据序列图

在这里插入图片描述
在这里插入图片描述

3.中断请求

在这里插入图片描述

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章