machine learning ex4

本週作業:Neural Networks Learning

實現神經網絡BP算法,應用於手寫數字的辨別。

[*] sigmoidGradient.m - Compute the gradient of the sigmoid function

[*] randInitializeWeights.m - Randomly initialize weights

[*] nnCostFunction.m - Neural network cost function

1.Neural Network

1.1Feedforward and cost function

CostFunction J(θ)

 hθ(x(i))通過Figure2計算得到

nnCostFunction.m

a1 = [ones(m,1) X];
z2 = a1*Theta1';
a2 = sigmoid(z2);
a2 = [ones(m,1) a2];
z3 = a2*Theta2';
a3 = sigmoid(z3);
h = a3;

因爲訓練的數據集中的y是一個5000*1的十進制數據集,進行數據處理的時候要將它映射爲二進制的矩陣yk,一個十進制數用一行01數列表示,其中僅有第n列爲1,則該行表示十進制數字n。因此yk爲5000*10的一個矩陣。

nnCostFunction.m

yk = zeros(m,num_labels);
for i = 1:m
    yk(i,y(i)) = 1;
end

計算CostFunction J(θ)且regularized


nnCostFunction.m

J = -1/m*sum(sum(yk.*log(h)+(1-yk).*log(1-h))) + lambda/(2*m)*(sum(sum(Theta1(:,2:end).^2))+sum(sum(Theta2(:,2:end).^2)));

2.Backpropagation

計算gradient,用fmincg去minimize J(θ),從而訓練神經網絡

2.1 Sigmoid gradient

SigmoidGradient.m

g = sigmoid(z).*(1-sigmoid(z));

2.2 Random initialization

randInitializeWeights.m

epsilon_init = 0.12;
W = rand(L_out,L_in+1)*(2*epsilon_init)-epsilon_init;

2.3 Backpropagation

                                           

一次計算一個訓練集,先用FP算法計算相應的a2,z2,z3,a3,h,再用BP算法計算相應的δ。用for i = 1:m循環對每個訓練集進行5個步驟計算。

  • 對第i個訓練集計算a2,z2,z3,a3,保證a1,a2要加上一個bias(1)
  • 對於第i個訓練集的第三層的輸出單元k,令

                                                         

  • 對於第二層

                                            

  • 累積gradient,對於第二層的δ0要去除,其中l表示第l層的gradient(第一層沒有)

                                                

  • 計算神經網絡的J(θ)的gradient(未正規化)

                                                     

2.4 Regularized Neural Network

不對θ(l)用於偏移量的第一個元素計算的進行正規化處理

                                      

nnCostFunction.m

for i = 1:m
    a1 = [1,X(i,:)];
    z2 = a1*Theta1';
    a2 = sigmoid(z2);
    a2 = [1,a2];
    z3 = a2*Theta2';
    a3 = sigmoid(z3);
    h = a3;
    delta3 = a3 - yk(i,:);
    delta2 = delta3*Theta2(:,2:end).*sigmoidGradient(z2);
    grad1 = grad1 + delta2'*a1;
    grad2 = grad2 + delta3'*a2;
end

grad1 = 1/m*grad1;
grad1(:,2:end) = grad1(:,2:end) + lambda/m*Theta1(:,2:end);
grad2 = 1/m*grad2;
grad2(:,2:end) = grad2(:,2:end) + lambda/m*Theta2(:,2:end);

nnCostFunction.m(全)

function [J grad] = nnCostFunction(nn_params, ...
                                   input_layer_size, ...
                                   hidden_layer_size, ...
                                   num_labels, ...
                                   X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
%   [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
%   X, y, lambda) computes the cost and gradient of the neural network. The
%   parameters for the neural network are "unrolled" into the vector
%   nn_params and need to be converted back into the weight matrices. 
% 
%   The returned parameter grad should be a "unrolled" vector of the
%   partial derivatives of the neural network.
%

% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
                 hidden_layer_size, (input_layer_size + 1));

Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
                 num_labels, (hidden_layer_size + 1));

% Setup some useful variables
m = size(X, 1);
         
% You need to return the following variables correctly 
J = 0;
grad1 = zeros(size(Theta1));
grad2 = zeros(size(Theta2));

% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
%               following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
%         variable J. After implementing Part 1, you can verify that your
%         cost function computation is correct by verifying the cost
%         computed in ex4.m
%
% Part 2: Implement the backpropagation algorithm to compute the gradients
%         Theta1_grad and Theta2_grad. You should return the partial derivatives of
%         the cost function with respect to Theta1 and Theta2 in Theta1_grad and
%         Theta2_grad, respectively. After implementing Part 2, you can check
%         that your implementation is correct by running checkNNGradients
%
%         Note: The vector y passed into the function is a vector of labels
%               containing values from 1..K. You need to map this vector into a 
%               binary vector of 1's and 0's to be used with the neural network
%               cost function.
%
%         Hint: We recommend implementing backpropagation using a for-loop
%               over the training examples if you are implementing it for the 
%               first time.
%
% Part 3: Implement regularization with the cost function and gradients.
%
%         Hint: You can implement this around the code for
%               backpropagation. That is, you can compute the gradients for
%               the regularization separately and then add them to Theta1_grad
%               and Theta2_grad from Part 2.
%

a1 = [ones(m,1) X];
z2 = a1*Theta1';
a2 = sigmoid(z2);
a2 = [ones(m,1) a2];
z3 = a2*Theta2';
a3 = sigmoid(z3);
h = a3;

yk = zeros(m,num_labels);
for i = 1:m
    yk(i,y(i)) = 1;
end

J = -1/m*sum(sum(yk.*log(h)+(1-yk).*log(1-h))) + lambda/(2*m)*(sum(sum(Theta1(:,2:end).^2))+sum(sum(Theta2(:,2:end).^2)));

for i = 1:m
    a1 = [1,X(i,:)];
    z2 = a1*Theta1';
    a2 = sigmoid(z2);
    a2 = [1,a2];
    z3 = a2*Theta2';
    a3 = sigmoid(z3);
    h = a3;
    delta3 = a3 - yk(i,:);
    delta2 = delta3*Theta2(:,2:end).*sigmoidGradient(z2);
    grad1 = grad1 + delta2'*a1;
    grad2 = grad2 + delta3'*a2;
end

grad1 = 1/m*grad1;
grad1(:,2:end) = grad1(:,2:end) + lambda/m*Theta1(:,2:end);
grad2 = 1/m*grad2;
grad2(:,2:end) = grad2(:,2:end) + lambda/m*Theta2(:,2:end);


% -------------------------------------------------------------

% =========================================================================

% Unroll gradients
grad = [grad1(:) ; grad2(:)];


end

3.Visualizing the hidden layer

對隱藏層進行可視化處理

displayData(Theta1(:, 2:end));

                                          

會發現隱藏層大致對應了在尋找輸出層圖像的筆畫或者其他模式

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章