第十章-Android的消息機制(MessageQueue、Looper、Handler)

一、消息隊列的工作原理
消息隊列在Android中指的是MessageQueue,MessageQueue主要包含兩個操作:插入和讀取。讀取操作本身會伴隨着刪除操作,插入和讀取對應的方法分別爲enqueueMessage和next,其中enqueueMessage的作用是往消息隊列中插入一條消息,而next的作用是從消息隊列中取出一條消息並將其從消息隊列中移除。儘管MessageQueue叫消息隊列,但是它的內部實現並不是用的隊列,實際上它是通過一個單鏈表的數據結構來維護消息隊列,單鏈表的插入和刪除上比較有優勢。下面主要看一下他的enqueueMessage和next方法的實現:

	android.os.MessageQueue#enqueueMessage
	boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

從enqueueMessage的實現中可以看出,它的主要操作就是單鏈接的插入操作,這裏就不再過多解釋了,下面看一下next方法的實現,next的主要邏輯:


	android.os.MessageQueue#next
	Message next() {
        ...

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;//可以看到這裏取了一個消息出來,就斷開了這個消息的指向。
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                ...
            }
            ...
        }
    }

可以發現next方法是一個無限循環的方法,如果消息隊列中沒有消息,那麼next方法會一直阻塞在這裏。當有新消息到來時,next方法會返回這條消息並將其從單鏈表中移除。

二、Lopper的工作原理
Looper在Android消息機制中扮演着消息循環的角色,具體來說就是它會不停的從MessageQueue中查看是否有新消息,如果有新消息就會立即處理,否則就會一直阻塞在那裏。首先來看下他的構造方法,在構造方法中它會創建一個MessageQueue即消息隊列,然後將當前線程的對象保存起來如下所示。

    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

我們都知道,Handler的工作需要Looper,沒有Looper的線程就會報錯, 那麼如何爲一個線程創建Looper呢?其實很簡單,就是通過Looper.prepare()即可爲當前線程創建一個Looper,接着通過Looper.loop()來開啓循環,如下所示。

	new Thread("Thread #2") {
		@Override
		public void run() {
			Looper.prepare();
			Handler mHandler = new Handler();
			Looper.loop();
		}
	}.start();

Looper除了prepare方法外,還提供了parpareMainLooper方法,這個方法主要是給主線程也就是ActivityThread創建Looper使用的,其本質也是通過prepare方法實現的。由於主線程的Looper比較特殊,所以Looper提供了一個getMainLooper方法,通過它可以在任何地方獲取到主線程的Looper。Looper也是可以退出的,提供了quit和quitSafely來退出一個Looper,二者的區別是:quit會直接退出,而quitSafely只是設定一個退出標記,然後把消息隊列中已有消息處理完畢後才安全退出。
Looper退出後,通過Handler發送的消息會失敗,這個時候Handler的send方法會返回false。在子線程中,如果手動爲其創建了Looper,那麼在所有的事情完成以後應該調用quit方法來終止循環,否則子線程會一直處於等待狀態,而如果退出Looper以後,這個線程就會立刻終止,因此建議不需要的時候終止Looper。

Looper最重要的一個方法是loop,只有調用了loop後,消息循環系統纔會真正地起作用,它的實現如下:

	android.os.Looper#loop
	/**
     * Run the message queue in this thread. Be sure to call
     * {@link #quit()} to end the loop.
     */
    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            final long end;
            try {
                msg.target.dispatchMessage(msg);
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (slowDispatchThresholdMs > 0) {
                final long time = end - start;
                if (time > slowDispatchThresholdMs) {
                    Slog.w(TAG, "Dispatch took " + time + "ms on "
                            + Thread.currentThread().getName() + ", h=" +
                            msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

在這裏插入圖片描述

三、Handler的工作原理
Handler的工作主要是包含消息的發送和接收過程。消息的發送是通過post的一系列方法以及send的一系列方法來實現的,post的一系列方法最終是通過send的一系列方法來實現的。發送一條消息的經典過程如下所示。

	android.os.Handler#sendMessage
    public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
    }
	
    public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }
	
    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }
	
    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

可以發現,Handler發消息的過程僅僅是向消息隊列裏插入一條消息,MessageQueue的next方法就會返回這條消息給Looper,Looper收到消息後就開始處理了,最終消息由Looper交由Handler處理,即Handler的dispatchMessage方法就會被調用,這時Handler就進入了處理消息的階段,dispatchMessage的實現如下:

	android.os.Handler#dispatchMessage
    /**
     * Handle system messages here.
     */
    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

在這裏插入圖片描述
在這裏插入圖片描述

最後,調用Handler的handlerMessage方法來處理消息。Handler處理消息的過程可以歸納爲一個流程圖:

在這裏插入圖片描述

Handler還有一個特殊的構造方法,那就是通過一個特定的Looper來構造Handler,它的實現如下所示。通過這個構造方法可以實現一些特殊的功能。

    public Handler(Looper looper) {
        this(looper, null, false);
    }

在這裏插入圖片描述

    public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

四、主線程的消息循環
Android的主線程就是ActivityThread,主線程的入口方法爲main,在main方法中系統會通過Looper.prepareMainLooper()來創建主線程的Looper和MessageQueue,並且通過Looper.loop()來開啓主線程的消息循環,如下所示:

	android.app.ActivityThread#main
	public static void main(String[] args) {
			SamplingProfilerIntegration.start();

			// CloseGuard defaults to true and can be quite spammy.  We
			// disable it here, but selectively enable it later (via
			// StrictMode) on debug builds, but using DropBox, not logs.
			CloseGuard.setEnabled(false);

			Environment.initForCurrentUser();

			// Set the reporter for event logging in libcore
			EventLogger.setReporter(new EventLoggingReporter());

			Security.addProvider(new AndroidKeyStoreProvider());

			Process.setArgV0("<pre-initialized>");

			Looper.prepareMainLooper();

			ActivityThread thread = new ActivityThread();
			thread.attach(false);

			if (sMainThreadHandler == null) {
				sMainThreadHandler = thread.getHandler();
			}

			AsyncTask.init();

			if (false) {
				Looper.myLooper().setMessageLogging(new
						LogPrinter(Log.DEBUG, "ActivityThread"));
			}

			Looper.loop();

			throw new RuntimeException("Main thread loop unexpectedly exited");
		}
	}

主線程開始循環之後,ActivityThread還需要一個Handler來和消息隊列交互,這個Handler就是ActivityThreadH,它內部定義了一組消息類型,主要包含了四大組件的啓動和停止等過程,如下所示:

    private class H extends Handler {
        public static final int LAUNCH_ACTIVITY         = 100;
        public static final int PAUSE_ACTIVITY          = 101;
        public static final int PAUSE_ACTIVITY_FINISHING= 102;
        public static final int STOP_ACTIVITY_SHOW      = 103;
        public static final int STOP_ACTIVITY_HIDE      = 104;
        public static final int SHOW_WINDOW             = 105;
        public static final int HIDE_WINDOW             = 106;
        public static final int RESUME_ACTIVITY         = 107;
        public static final int SEND_RESULT             = 108;
        public static final int DESTROY_ACTIVITY        = 109;
        public static final int BIND_APPLICATION        = 110;
        public static final int EXIT_APPLICATION        = 111;
        public static final int NEW_INTENT              = 112;
        public static final int RECEIVER                = 113;
        public static final int CREATE_SERVICE          = 114;
        public static final int SERVICE_ARGS            = 115;
        public static final int STOP_SERVICE            = 116;
		...
	}

ActivityThread通過ApplicationThread和AMS進程進程間通信,AMS以進程間通信的方法完成ActivityThread的請求後回調ApplicationThread中的Binder方法,然後ApplicationThread會向H發送消息,H收到消息後將ApplicationThread中的邏輯切換到ActivityThread去執行,即切換到主線程去執行,這個過程就是主線程的消息循環模型。

到這裏消息機制就分析完了,不涉及很深的原理,但是設計思想很好。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章