三分法模板讲解

三分查找

我们都知道 二分查找 适用於单调函数中逼近求解某点的值。
如果遇到凸性或凹形函数时,可以用三分查找求那个凸点或凹点。
下面的方法应该是三分查找的一个变形。

如图所示,已知左右端点L、R,要求找到白点的位置。
思路:通过不断缩小 [L,R] 的范围,无限逼近白点。
做法:先取 [L,R] 的中点 mid,再取 [mid,R] 的中点 mmid,通过比较 f(mid) 与 f(mmid) 的大小来缩小范围。
当最后 L=R-1 时,再比较下这两个点的值,我们就找到了答案。
1、当 f(mid) > f(mmid) 的时候,我们可以断定 mmid 一定在白点的右边。
反证法:假设 mmid 在白点的左边,则 mid 也一定在白点的左边,又由 f(mid) > f(mmid) 可推出 mmid < mid,与已知矛盾,故假设不成立。
所以,此时可以将 R = mmid 来缩小范围。
2、当 f(mid) < f(mmid) 的时候,我们可以断定 mid 一定在白点的左边。
反证法:假设 mid 在白点的右边,则 mmid 也一定在白点的右边,又由 f(mid) < f(mmid) 可推出 mid > mmid,与已知矛盾,故假设不成立。
同理,此时可以将 L = mid 来缩小范围。

int SanFen(int l,int r) //找凸点  
{  
    while(l < r-1)  
    {  
        int mid  = (l+r)/2;  
        int mmid = (mid+r)/2;  
        if( f(mid) > f(mmid) )  
            r = mmid;  
        else  
            l = mid;  
    }  
    return f(l) > f(r) ? l : r;  
}  

三分查找

一. 概念
在二分查找的基础上,在右区间(或左区间)再进行一次二分,这样的查找算法称为三分查找,也就是三分法。
三分查找通常用来迅速确定最值。

二分查找所面向的搜索序列的要求是:具有单调性(不一定严格单调);没有单调性的序列不是使用二分查找。
与二分查找不同的是,三分法所面向的搜索序列的要求是:序列为一个凸性函数。通俗来讲,就是该序列必须有一个最大值(或最小值),在最大值(最小值)的左侧序列,必须满足不严格单调递增(递减),右侧序列必须满足不严格单调递减(递增)。如下图,表示一个有最大值的凸性函数:

二、算法过程

1)、与二分法类似,先取整个区间的中间值midmid = (left + right) / 2;  
(2)、再取右侧区间的中间值midmid,从而把区间分为三个小区间。
midmid = (mid + right) / 2;  
(3)、我们mid比midmid更靠近最值,我们就舍弃右区间,否则我们舍弃左区间?。
比较mid与midmid谁最靠近最值,只需要确定mid所在的函数值与midmid所在的函数值的大小。当最值为最大值时,mid与midmid中较大的那个自然更为靠近最值。最值为最小值时同理。

if (cal(mid) > cal(midmid))  
    right = midmid;  
else  
    left = mid; 

(4)重复(1)(2)(3)直至找到最值。

(5)另一种三分写法
double three_devide(double low,double up) {  
    double m1,m2;  
    while(up-low>=eps)  {  
        m1=low+(up-low)/3;  
        m2=up-(up-low)/3;  
        if(f(m1)<=f(m2))  
            low=m1;  
        else  
            up=m2;  
    }  
    return (m1+m2)/2;  
}  

算法的正确性:
1、mid与midmid在最值的同一侧。由于凸性函数在最大值(最小值)任意一侧都具有单调性,因此,mid与midmid中,更大(小)的那个 数自然更为靠近最值。此时,我们远离最值的那个区间不可能包含最值,因此可以舍弃。
2、mid与midmid在最值的两侧。由于最值在中间的一个区间,因此我们舍弃一个区间后,并不会影响到最值

const double EPS = 1e-10;  

double calc(double x)  {  
    // f(x) = -(x-3)^2 + 2;  
    return -(x-3.0)*(x-3.0) + 2;  
}  

double ternarySearch(double low, double high)  {  
    double mid, midmid;  
    while (low + EPS < high)  {  
        mid = (low + high) / 2;  
        midmid = (mid + high) / 2;  
        double mid_value = calc(mid);  
        double midmid_value = calc(midmid);  
        if (mid_value > midmid_value)  
            high = midmid;  
        else  
            low = mid;  
    }  
    return low;  
}  

调用ternarySearch(0, 6),返回的结果为3.0000
二分法作为分治中最常见的方法,适用於单调函数,逼近求解某点的值。但当函数是凸性函数时,二分法就无法适用,这时三分法就可以“大显身手”~~

程序模版如下:

double Calc(Type a){
    /* 根据题目的意思计算 */
}
void Solve(void){
    double Left, Right;
    double mid, midmid;
    double mid_value, midmid_value;
    Left = MIN; Right = MAX;
    while (Left + EPS < Right){
        mid = (Left + Right) / 2;
        midmid = (mid + Right) / 2;
        mid_area = Calc(mid);
        midmid_area = Calc(midmid);
        // 假设求解最大极值.
        if (mid_area >= midmid_area) Right = midmid;
        else Left = mid;
    }
}

现根据几道的OJ题目来分析三分法的具体实现。
buaa 1033 Easy Problem
http://acm.buaa.edu.cn/oj/problem_show.php?c=0&p=1033

题意为在一条线段上找到一点,与给定的P点距离最小。很明显的凸性函数,用三分法来解决。
Calc函数即为求某点到P点的距离。
ZOJ 3203 Light Bulb
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3203

如图,人左右走动,求影子L的最长长度。
根据图,很容易发现当灯,人的头部和墙角成一条直线时(假设此时人站在A点),此时的长度是影子全在地上的最长长度。当人再向右走时,影子开始投影到墙上,当人贴着墙,影子长度即为人的高度。所以当人从A点走到墙,函数是先递增再递减,为凸性函数,所以我们可以用三分法来求解。

下面只给出Calc函数,其他直接套模版即可。

double Calc(double x){
    return (h * D - H * x) / (D - x) + x;
}

heru 5081 Turn the corner 08年哈尔滨regional网络赛
http://acm.hrbeu.edu.cn/index.php?act=problem&id=1280

汽车拐弯问题,给定X, Y, l, d判断是否能够拐弯。首先当X或者Y小于d,那么一定不能。
其次我们发现随着角度θ的增大,最大高度h先增长后减小,即为凸性函数,可以用三分法来求解。

这里的Calc函数需要比较繁琐的推倒公式:
s = l * cos(θ) + w * sin(θ) - x;
h = s * tan(θ) + w * cos(θ);
其中s为汽车最右边的点离拐角的水平距离, h为里拐点最高的距离, θ范围从0到90。
POJ 3301 Texas Trip
http://acm.pku.edu.cn/JudgeOnline/problem?id=3301

题意为给定n(n <= 30)个点,求出饱含这些点的面积最小的正方形。

有两种解法,一种为逼近法,就是每次m分角度,求出最符合的角度,再继续m分,如此进行times次,即可求出较为精确的解。(m 大概取10, times取30即可)

第二种解法即为三分法,首先旋转的角度只要在0到180度即可,超过180度跟前面的相同的。座标轴旋转后,座标变换为:
X’ = x * cosa - y * sina;
y’ = y * cosa + x * sina;

至于这题的函数是否是凸性的,为什么是凸性的,我也无法给出准确的证明,希望哪位路过的大牛指点一下~~
例题更新(2010.5.5)
hdu 3400 Line belt
http://acm.hdu.edu.cn/showproblem.php?pid=3400
典型的三分法,先三分第一条线段,找到一个点,然后根据这个点再三分第二条线段即可,想出三分的思路基本就可以过了。
对于求解一些实际问题,当公式难以推导出来时,二分、三分法可以较为精确地求解出一些临界值,且效率也是令人满意的。
(转自http://hi.baidu.com/czyuan_acm/blog/item/8cc45b1f30cefefde1fe0b7e.html

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章