拉格朗日方程的三種推導方法之基於達朗貝爾原理推導

拉格朗日方程是分析力學中的重要方程,其地位相當於牛頓第二定律之於牛頓力學。

達朗貝爾原理由法國物理學家與數學家讓•達朗貝爾發現並以其命名。達朗貝爾原理表明:對於任意物理系統,所有慣性力或施加的外力,經過符合約束條件的虛位移,所作的虛功的總合爲零。即:
δW=i(Fi+Ii)δri=0(1)\delta W=\sum\limits_{i}{\left( {{\mathbf{F}}_{i}}+{{\mathbf{I}}_{i}} \right)}\cdot \delta {{\mathbf{r}}_{i}}=0\tag{1}
其中Ii{{\mathbf{I}}_{i}}爲慣性力,Ii=miai{{\mathbf{I}}_{i}}=-{{m}_{i}}{{\mathbf{a}}_{i}}Fi{{\mathbf{F}}_{i}}爲粒子所受外力,δri\delta {{\mathbf{r}}_{i}}爲符合系統約束的虛位移。
設粒子 Pi{{P}_{i}}的位置 ri{{\mathbf{r}}_{i}}爲廣義座標q1,q2,,qn{{q}_{1}},{{q}_{2}},\cdots ,{{q}_{n}}與時間tt的函數:
ri=Pi(q1,q2,,qn,t)(2){{\mathbf{r}}_{i}}={{P}_{i}}\left( {{q}_{1}},{{q}_{2}},\cdots ,{{q}_{n}},t \right)\tag{2}
則虛位移可以表示爲:
δri=jriqjδqj(3)\delta {{\mathbf{r}}_{i}}=\sum\limits_{j}{\frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}}\delta {{q}_{j}}\tag{3}
粒子的速度vi=vi(q1,q2,,qn,q˙1,q˙2,,q˙n,t){{\mathbf{v}}_{i}}={{\mathbf{v}}_{i}}\left( {{q}_{1}},{{q}_{2}},\cdots ,{{q}_{n}},{{{\dot{q}}}_{1}},{{{\dot{q}}}_{2}},\cdots ,{{{\dot{q}}}_{n}},t \right) 可表示爲:
vi=dridt=rit+jriqjq˙j(4){{\mathbf{v}}_{i}}=\frac{d{{\mathbf{r}}_{i}}}{dt}=\frac{\partial {{\mathbf{r}}_{i}}}{\partial t}+\sum\limits_{j}{\frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}}{{\dot{q}}_{j}}\tag{4}
取速度對於廣義速度的偏微分:
viq˙j=riqj(5)\frac{\partial {{\mathbf{v}}_{i}}}{\partial {{{\dot{q}}}_{j}}}=\frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\tag{5}
首先轉化方程(1)的加速度項。將方程(3)代入:
imiaiδri=i,jmiairiqjδqj(6)\sum\limits_{i}{{{m}_{i}}}{{\mathbf{a}}_{i}}\cdot \delta {{\mathbf{r}}_{i}}=\sum\limits_{i,j}{{{m}_{i}}}{{\mathbf{a}}_{i}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\delta {{q}_{j}}\tag{6}
應用乘積法則:
i,jmiairiqjδqj=i,j(ddt(miviriqj)mividdt(riqj))δqj(7)\sum\limits_{i,j}{{{m}_{i}}}{{\mathbf{a}}_{i}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\delta {{q}_{j}}=\sum\limits_{i,j}{\left( \frac{d}{dt}\left( {{m}_{i}}{{\mathbf{v}}_{i}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}} \right)-{{m}_{i}}{{\mathbf{v}}_{i}}\cdot \frac{d}{dt}\left( \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}} \right) \right)}\delta {{q}_{j}}\tag{7}
注意到riqj\frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}} 的參數爲 q1,q2,,qn,t{{q}_{1}},{{q}_{2}},\cdots ,{{q}_{n}},t,而速度 vi{{\mathbf{v}}_{i}} 的參數爲q1,q2,,qn,q˙1,q˙2,,q˙n,t{{q}_{1}},{{q}_{2}},\cdots ,{{q}_{n}},{{\dot{q}}_{1}},{{\dot{q}}_{2}},\cdots ,{{\dot{q}}_{n}},t ,所以,
ddt(riqj)=(t+kq˙kqk)(riqj)=2riqjt+k2riqjqkq˙k(8)\frac{d}{dt}\left( \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}} \right)=\left( \frac{\partial }{\partial t}+\sum\limits_{k}{{{{\dot{q}}}_{k}}}\frac{\partial }{\partial {{q}_{k}}} \right)\left( \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}} \right)=\frac{{{\partial }^{2}}{{\mathbf{r}}_{i}}}{\partial {{q}_{j}}\partial t}+\sum\limits_{k}{\frac{{{\partial }^{2}}{{\mathbf{r}}_{i}}}{\partial {{q}_{j}}\partial {{q}_{k}}}}{{\dot{q}}_{k}}\tag{8}
viqj=qj(rit+kriqkq˙k)=2riqjt+k2riqjqkq˙k(9)\frac{\partial {{\mathbf{v}}_{i}}}{\partial {{q}_{j}}}=\frac{\partial }{\partial {{q}_{j}}}\left( \frac{\partial {{\mathbf{r}}_{i}}}{\partial t}+\sum\limits_{k}{\frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{k}}}}{{{\dot{q}}}_{k}} \right)=\frac{{{\partial }^{2}}{{\mathbf{r}}_{i}}}{\partial {{q}_{j}}\partial t}+\sum\limits_{k}{\frac{{{\partial }^{2}}{{\mathbf{r}}_{i}}}{\partial {{q}_{j}}\partial {{q}_{k}}}}{{\dot{q}}_{k}}\tag{9}
因此,以下關係式成立:
ddt(riqj)=viqj(10)\frac{d}{dt}\left( \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}} \right)=\frac{\partial {{\mathbf{v}}_{i}}}{\partial {{q}_{j}}}\tag{10}
將方程(5)與(10)代入,加速度項成爲:
i,jmiairiqjδqj=i,j(ddt(miviviq˙j)miviviqj)δqj(11)\sum\limits_{i,j}{{{m}_{i}}}{{\mathbf{a}}_{i}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\delta {{q}_{j}}=\sum\limits_{i,j}{\left( \frac{d}{dt}\left( {{m}_{i}}{{\mathbf{v}}_{i}}\cdot \frac{\partial {{\mathbf{v}}_{i}}}{\partial {{{\dot{q}}}_{j}}} \right)-{{m}_{i}}{{\mathbf{v}}_{i}}\cdot \frac{\partial {{\mathbf{v}}_{i}}}{\partial {{q}_{j}}} \right)}\delta {{q}_{j}}\tag{11}
代入動能表達式:
T=i12mivivi(12)T=\sum\limits_{i}{\frac{1}{2}}{{m}_{i}}{{\mathbf{v}}_{i}}\cdot {{\mathbf{v}}_{i}}\tag{12}
則加速度項與動能的關係爲:
i,jmiairiqjδqj=j(ddt(Tq˙j)Tqj)δqj(13)\sum\limits_{i,j}{{{m}_{i}}}{{\mathbf{a}}_{i}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\delta {{q}_{j}}=\sum\limits_{j}{\left( \frac{d}{dt}\left( \frac{\partial T}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial T}{\partial {{q}_{j}}} \right)}\delta {{q}_{j}}\tag{13}
然後轉換方程(1)的外力項代入方程(3)得:
iFiδri=i,jFiriqjδqj=jFjδqj(14)\sum\limits_{i}{{{\mathbf{F}}_{i}}}\cdot \delta {{\mathbf{r}}_{i}}=\sum\limits_{i,j}{{{\mathbf{F}}_{i}}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\delta {{q}_{j}}=\sum\limits_{j}{{{\mathcal{F}}_{j}}}\delta {{q}_{j}}\tag{14}
其中F\mathcal{F}是廣義力:
Fj=iFiriqj(15){{\mathcal{F}}_{j}}=\sum\limits_{i}{{{\mathbf{F}}_{i}}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\tag{15}
將方程(13)與(14)代入方程(1)可得:
j(ddt(Tq˙j)TqjFj)δqj=0(16)\sum\limits_{j}{\left( \frac{d}{dt}\left( \frac{\partial T}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial T}{\partial {{q}_{j}}}-{{\mathcal{F}}_{j}} \right)}\delta {{q}_{j}}=0\tag{16}
假設所有的廣義座標都相互獨立,則所有的廣義座標的虛位移也都相互獨立。由於這些虛位移都是任意設定的,只有滿足下述方程,才能使方程(16)成立:
ddt(Tq˙j)TqjFj=0(17)\frac{d}{dt}\left( \frac{\partial T}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial T}{\partial {{q}_{j}}}-{{\mathcal{F}}_{j}}=0\tag{17}
這系統的廣義力與廣義位勢 VV之間的關係式爲:
Fj=ddt(Vq˙j)Vqj(18){{\mathcal{F}}_{j}}=\frac{d}{dt}\left( \frac{\partial V}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial V}{\partial {{q}_{j}}}\tag{18}
代入得:
ddt((TV)q˙j)(TV)qj=0(19)\frac{d}{dt}\left( \frac{\partial (T-V)}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial (T-V)}{\partial {{q}_{j}}}=0\tag{19}
定義拉格朗日量 LL爲動能與勢能之差,可得拉格朗日方程:
ddt(Lq˙j)Lqj=0(20)\frac{d}{dt}\left( \frac{\partial L}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial L}{\partial {{q}_{j}}}=0\tag{20}

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章